
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-03-01

Judicious Use of Communication for Inherently
Parallel Optimization
Andrew W. McNabb
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
McNabb, Andrew W., "Judicious Use of Communication for Inherently Parallel Optimization" (2015). All Theses and Dissertations.
5258.
https://scholarsarchive.byu.edu/etd/5258

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5258?utm_source=scholarsarchive.byu.edu%2Fetd%2F5258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Judicious Use of Communication

for Inherently Parallel

Optimization

Andrew W. McNabb

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Kevin Seppi, Chair
Christophe Giraud-Carrier

Eric Mercer
Daniel Zappala

Dan Olsen

Department of Computer Science

Brigham Young University

March 2015

Copyright © 2015 Andrew W. McNabb

All Rights Reserved

www.manaraa.com

ABSTRACT

Judicious Use of Communication
for Inherently Parallel

Optimization

Andrew W. McNabb
Department of Computer Science, BYU

Doctor of Philosophy

Function optimization—finding the minimum or maximum of a given function—is an
extremely challenging problem with applications in physics, economics, machine learning,
engineering, and many other fields. While optimization is an active area of research, only
a portion of this work acknowledges parallel computation, which is now widely available.
Today, anyone with a modest budget can buy a cluster with hundreds of cores, pay for access
to a supercomputer with thousands of processors, or at least purchase a laptop with 8 cores.
Thus, an algorithm that works well in serial but cannot be parallelized is needlessly inefficient
in real-life computational environments.

We address these issues in three connected threads of development: a high-level pro-
gramming framework that makes it possible to create flexible and efficient implementations of
optimization algorithms; improvements to an existing algorithm, Particle Swarm Optimiza-
tion, to make it take better advantage of parallel resources; and a statistical model designed
to efficiently use available information in parallel optimization by inferring search directions.
Each of these is an essential step toward effective parallel optimization. First, without a
suitable high-level programming model, expediency leads to purely serial development with
parallel issues only an afterthought. Second, PSO has proven effective for optimization and
is an excellent candidate to consider for efficient parallel implementations. Third, a model
for inference of search directions is useful for understanding communication in the context of
parallel optimization and provides a flexible base for continuing optimization research.

Keywords: function optimization, parallel computation, Particle Swarm Optimization, Bing-
ham distribution

www.manaraa.com

Table of Contents

Introduction 1

1 Introduction 2

1.1 Optimization . 2

1.2 Research Area Overview . 4

1.3 Thesis Statement . 6

1.4 Overview . 6

1.4.1 Programming Framework for Parallel Optimization (Part I) 7

1.4.2 Reconsidering Particle Swarm Optimization in a Parallel Context (Part II) 8

1.4.3 Inference of Search Directions (Part III) 10

1.5 Publications . 11

I Programming Framework for Parallel Optimization 13

2 Parallel PSO Using MapReduce 14

2.1 Introduction . 15

2.2 Particle Swarm Optimization . 16

2.3 MapReduce . 17

2.3.1 Map Function . 18

2.3.2 Reduce Function . 18

2.3.3 Example: WordCount . 19

2.3.4 Benefits of MapReduce . 20

iii

www.manaraa.com

2.3.5 MapReduce Implementations . 21

2.4 MapReduce PSO (MRPSO) . 21

2.4.1 Particle Representation and Messages 22

2.4.2 MRPSO Map Function . 24

2.4.3 MRPSO Reduce Function . 25

2.4.4 Map and Reduce in Context . 25

2.5 Results and Remarks . 26

2.5.1 Implementation . 26

2.5.2 Environment . 26

2.5.3 Methodology . 27

2.5.4 RBF Network Training . 28

2.5.5 RBF Results . 29

2.5.6 Sphere . 30

2.5.7 RBF With 1,000,000 Points . 32

2.5.8 Load Balancing . 33

2.6 Future Work and Conclusions . 35

3 Mrs: MapReduce for Scientific Computing in Python 36

3.1 Introduction . 37

3.2 Background and Related Work . 38

3.3 MapReduce in Scientific Computing . 41

3.4 The Design and Architecture of Mrs . 43

3.4.1 Programming Model . 44

3.4.2 Architecture . 46

3.5 Evaluation . 47

3.5.1 Subjective Assessment . 48

3.5.2 Performance . 52

3.6 Conclusion . 58

iv

www.manaraa.com

4 High Performance MapReduce for Iterative and Asynchronous Algorithms 60

4.1 Introduction . 61

4.2 Related Work . 63

4.3 Synchronous MapReduce . 65

4.3.1 Infrequent Checkpointing to Distributed Filesystems 65

4.3.2 Reduce-map Operation . 67

4.3.3 Iterative Programming Model . 69

4.4 Asynchronous MapReduce Programming Model 74

4.5 Experimental Results . 78

4.5.1 Synchronous MapReduce . 78

4.5.2 Asynchronous MapReduce . 83

4.6 Conclusion . 85

II Reconsidering Particle Swarm Optimization in a Parallel

Context 87

5 Speculative Evaluation in Particle Swarm Optimization 88

5.1 Introduction . 89

5.2 Particle Swarm Optimization . 91

5.3 Speculative Evaluation in PSO . 92

5.3.1 Implementation . 95

5.3.2 Using All Speculative Evaluations . 96

5.4 Results . 97

5.5 Conclusions . 100

6 The Apiary Topology: Emergent Behavior in Communities of Particle

Swarms 102

6.1 Introduction . 103

v

www.manaraa.com

6.2 Background Material: Particle Swarm Optimization 104

6.3 The Apiary Topology . 105

6.4 Experimental Results . 106

6.4.1 Apiaries in Serial PSO . 107

6.4.2 Apiary Parameters . 110

6.4.3 Parallel Performance of Apiaries . 112

6.5 Conclusions and Future Work . 113

7 Serial PSO Results Are Irrelevant in a Multi-core Parallel World 115

7.1 Introduction . 116

7.2 Parallel PSO . 118

7.2.1 Particle Swarm Optimization . 119

7.2.2 Objective Functions . 120

7.2.3 Parallelization of PSO . 121

7.3 Processor Scaling Independent of Communication 123

7.3.1 Independent Runs . 124

7.3.2 Swarm Size . 125

7.3.3 Speculative Evaluation . 126

7.4 Task Interaction and Communication . 127

7.4.1 Sparse Topologies . 128

7.4.2 Subswarms . 129

7.4.3 Synchronous and Asynchronous Parallel PSO 130

7.5 Conclusion . 133

III Inference of Search Directions 135

8 Inference of Search Directions for Exploiting Separability in Parallel Op-

timization 136

vi

www.manaraa.com

8.1 Introduction . 136

8.2 Bingham and BinghamConjugate Distributions 138

8.2.1 Bingham Conjugate Distribution . 140

8.2.2 Sampling Algorithm . 142

8.3 Model . 146

8.4 Results . 148

8.5 Conclusion . 152

8.6 Appendix: Properties of the Bingham Distribution 154

8.7 Appendix: Proofs . 155

8.8 Appendix: Bingham Algorithms . 161

8.8.1 BinghamEigendecomposition Algorithm 161

8.8.2 BinghamSampler Algorithm . 162

8.8.3 BinghamConstant Algorithm . 163

Conclusion 165

9 Conclusion 166

9.1 Contributions . 166

9.2 Future Work . 168

References 170

vii

www.manaraa.com

Introduction

1

www.manaraa.com

Chapter 1

Introduction

1.1 Optimization

Optimization is the problem of finding the minimum or maximum, along with its associated

input value, for a given objective function—in other words, finding x? = arg min f(x) and

f(x?). There are many different types of optimization problems. An objective function

may have discrete- or continuous-valued inputs, or even a mix. Valid solutions may be

constrained to certain areas of the function’s domain, or search may be unconstrained.

A local optimization problem only requires a local minimum or maximum, while a global

optimization problem requires a global optimum. Analytical optimization may take advantage

of closed-form derivatives, while empirical (also referred to as direct search or black box)

optimization has only values at the points that it evaluates. This work is concerned with

unconstrained global continuous empirical optimization.

Optimization in general is an exceptionally difficult problem. Several obvious strategies

are ineffective. First, one might consider sweeping the domain of a function. Figure 1.1a

demonstrates that a grid of samples from a continuous-valued function may lead to incorrect

conclusions about the location of the global minimum. Furthermore, sweeping the domain

is exponential in the number of dimensions. For a 50-dimensional function, taking each

combination of just 2 points from each dimension (the corners of a hypercube) would require

250 (over 1015) evaluations. Second, one might consider estimating the gradient at a point

by evaluating at a short distance away along each dimension. Figure 1.1b shows that this

2

www.manaraa.com

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

(a) Points superimposed on the Rastrigin
function represent observations. The points
suggest that the region around x = 5 contains
a local maximum, but x = 5 is in fact the
global minimum.

−4 −2 0
2 −2

0
2

40

20

40 f(x, y)

f(x+ ∆x, y)
f(x, y + ∆y)

∇f

∇f̂

(b) A situation where an estimated gradient
(∇f̂) points in the opposite direction of the
function’s true gradient (∇f).

Figure 1.1: Two situations where simple ideas for optimization fail badly.

estimated gradient can point in the opposite direction of the true gradient. Especially in

high-dimensional spaces, a finite set of samples from a function can be extremely misleading.

Optimization algorithms are usually assessed in a serial context, and parallelization is

usually added as an afterthought without fully addressing the opportunities and concerns that

are present in a parallel computational environment. Research rarely considers the impact

of changes on issues that affect parallel algorithms, such as communication and barriers.

Furthermore, current algorithms fail to take advantage of the significantly increased resources

that are available on a parallel cluster. Parallel computation should serve as the standard

execution environment of optimization algorithms, influence the development of existing

algorithms, and drive the design of novel optimization algorithms.

Most empirical optimization algorithms, such as Evolution Strategies, Simulated

Annealing, and Particle Swarm Optimization manage a small sample of points, which are

combined, modified, and reevaluated at each iteration to produce a new sample. Regions

where the value of the function is better are favored over regions where the value is worse.

Evolutionary algorithms exhibit stability of solutions as populations evolve as a group, but

combination mechanisms designed for serial computation often depend on significant or even

3

www.manaraa.com

global communication between processors. Existing improvements to parallelization do not

fully use available information. For example, virtually all optimization algorithms discard all

sampled points at each iteration, despite the vast memory on a cluster. Approaches based on

small working sets of data are simple, but a fresh non-evolutionary perspective allows for

taking a more principled approach to analyzing data, extracting as much value as possible

from previous samples.

1.2 Research Area Overview

Exhaustive search of a large space is impractical, so empirical optimization algorithms are

generally stochastic. These algorithms perform a sequence of function evaluations, and it

is helpful to model this behavior as a random walk. Some algorithms sample from one

position at each time step, while population-based algorithms simulate random walks of

multiple interdependent particles. We consider several influential local and global optimization

algorithms but omit methods which require function derivatives (e.g., the Broyden–Fletcher–

Goldfarb–Shanno method) or which are specific to constrained optimization problems (e.g.,

Sequential Quadratic Programming).

The simplest algorithms are referred to as local optimization algorithms and operate

under the assumption that the objective function is unimodal. While this work is concerned

with global optimization, which violates this assumption, we consider several influential local

optimization algorithms. The Hill Climbing algorithm is a greedy algorithm that makes a

change in one dimension of the input at a time and moves to the new position if it is better

than the current position. Hill Climbing is based on the Gradient Descent algorithm of [1],

which requires the gradient at each point. Powell’s Algorithm [2] manages a list of search

vectors and at each iteration performs a sequence of line searches along these directions

and replaces one of the vectors. The Nelder-Mead Simplex method [3] updates a simplex

defined by a set of points numbering one more than the number of dimensions. At each

step, the worst point in the simplex is reflected across the centroid, and the simplex is either

4

www.manaraa.com

expanded or contracted depending on whether the reflected point is better than the worst

point. Matyas [4] proposes Random Optimization, which samples a candidate value from a

Normal distribution centered on the current best value and moves if the new value is better.

Local optimization algorithms can be used for global optimization if a function is known to

be unimodal or if run repeatedly with random restart.

Kirkpatrick et al. [5] propose Simulated Annealing, a simple and popular approach

based on an algorithm by Metropolis [6] for performing simulations in statistical mechanics.

Simulated Annealing performs a random walk similar to Random Optimization, with a

dynamic temperature parameter that controls the probability of moving from a better to a

worse value. An initial high temperature encourages exploration, and a lowering temperature

increases exploitation, causing the algorithm to gradually settle to a local optimum.

Several evolution-inspired approaches perform function optimization by simulating

biological evolution and using the value of the objective function as a measure of fitness.

Evolution Strategies [7] simulate the evolution of a population of individuals represented as

real-valued vectors. Mutation is performed by drawing from a Normal distribution (as in

Random Optimization), and optional recombination may be given by randomly selecting

elements from either parent [8]. Genetic Algorithms [9] also simulate evolution but use

bit-string instead of real-valued representations. They were originally designed to be adaptive

systems but are also used for function optimization [10], though Evolution Strategies are more

commonly used for continuous function optimization. A few modern Evolution Strategies are

particularly effective. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [11]

includes the parameters of the mutation distribution in the representation of each individual.

Differential Evolution [12] mutates an individual by adding in the weighted difference between

two randomly chosen individuals from the population. Continuous Estimation of Distribution

Algorithms [13, 14] (related to Population-Based Incremental Learning) sample the next

generation from probability distributions inferred from the current population. Particle

5

www.manaraa.com

Swarm Optimization [15] creates a new generation by simulating motion of individuals in the

current generation and attracting individuals to neighbors with promising solutions.

1.3 Thesis Statement

Parallel optimization algorithms are improved in terms of quality of solution and runtime

performance when they are designed specifically to reduce communication and unnecessary

coordination. Furthermore, high-level frameworks can provide the flexibility to consider

a variety of approaches to parallel optimization, and directional statistics can provide a

unique theoretical perspective for adapting search directions with low communication and

coordination.

1.4 Overview

Too often, parallelization is considered an implementation detail rather than a primary

concern of optimization algorithms. Parallel computation should serve as the standard

execution environment of optimization algorithms, influence the development of existing

algorithms, and drive the design of novel optimization algorithms. We address these issues in

three connected threads of development, each of which is a separate part of this work:

1. Part I: a high-level programming framework that makes it possible to create flexible

and efficient implementations of optimization algorithms such as Particle Optimization

(PSO),

2. Part II: changes to an existing algorithm, PSO, to improve parallel performance by

reducing communication and centralized coordination, and

3. Part III: a novel statistical model for inference of search directions that is designed to en-

able algorithms that exploit separability and minimize communication and coordination

in a parallel environment.

6

www.manaraa.com

Each of these is an essential step toward effective parallel optimization. First, without

a suitable high-level programming model, expediency leads to purely serial development

with parallel issues only an afterthought. Second, PSO has proven effective for optimization

and is an excellent candidate to consider for efficient parallel implementations. Third,

probability theory moves beyond the inherent limitations of parallel evolutionary algorithms,

and statistical models are a strong basis for algorithms with transparent behavior.

1.4.1 Programming Framework for Parallel Optimization (Part I)

A high-level parallel programming model that is well-suited to iterative optimization algo-

rithms increases the availability and performance of parallel optimization algorithms. Most

parallel programming models are unsuitably low-level for optimization research, causing

programs to be difficult to write, brittle, and hard to modify. Parallel optimization algo-

rithms are typically implemented from scratch using low-level programming models, making

it difficult to rapidly adapt ideas into prototypes for new algorithms. This is particularly

troublesome because optimization is an active area of research, and algorithms are constantly

modified. The complexity of parallel programming is a major obstacle to the widespread

adoption of parallelization in optimization. High-level frameworks reduce the complexity of

building parallel programs but are typically poorly suited to iterative algorithms.

The MapReduce model is a good basis for optimization algorithms due to its simplicity

and familiarity. A MapReduce program is written at a high level without any explicit com-

munication, which is managed completely by the framework. This allows programs to focus

on the essence of an algorithm without becoming overwhelmed by bookkeeping. Furthermore,

this model is familiar within the broad area of machine learning. MapReduce has proven

popular for machine learning algorithms such as k-means [16], logistic regression [17], back-

propagation [17], independent component analysis [17], expectation maximization (EM) [17],

support vector machines [17], and genetic algorithms [18].

7

www.manaraa.com

Part I presents a MapReduce framework called Mrs 1 that is well-suited to optimization

algorithms. Chapter 2 formulates Particle Swarm Optimization as a MapReduce program.

Although the MapReduce programming model is a good fit for PSO, the per-iteration

overhead of Hadoop, designed for big data rather than computationally intensive applications,

is prohibitively expensive for iterative algorithms. Most existing MapReduce implementations

exhibit poor performance for iterative programs such as optimization algorithms, and the

standard MapReduce model cannot express some important parallel optimization algorithms

such as asynchronous parallel PSO. Chapter 3 introduces the Mrs framework, and Chapter 4

augments the MapReduce model with major improvements for iterative algorithms, including

support for asynchronous algorithms.

The asynchronous MapReduce programming model removes communication bottle-

necks that affect optimization algorithms and other iterative programs. Each iteration of an

algorithm in MapReduce consists of at least one map phase that performs the evaluation

of the objective function and a reduce phase that performs communication. In standard

MapReduce, the reduce step cannot proceed until all map tasks have completed. However, in

an optimization algorithm, starting some tasks in the next iteration early may be desirable.

In the asynchronous iterative MapReduce model, when a task proceeds to the next iteration

early, then missed messages would be rerouted to tasks in later iterations. This model is

implemented in Mrs.

1.4.2 Reconsidering Particle Swarm Optimization in a Parallel Context (Part II)

Part II considers changes to PSO to improve its performance in a parallel computational

environment. PSO is a particularly convenient algorithm for exploring parallel issues in

optimization. It is a relatively simple existing algorithm, making it a good test bed for

new ideas, and its swarm topology is very closely tied to communication in a parallel

implementation. Chapters 5 and 6 introduce two changes to PSO, speculative evaluation and

1 A MapReduce program is often prefixed by “MR,” which can be pronounced “mister” (for example,
“MRWordCount”). As a play on words, the new implementation is called “Mrs.”

8

www.manaraa.com

a subswarm-based swarm topology respectively, to explore approaches to the efficient use of

resources and communication parallel optimization. Chapter 7 emphasizes the importance of

evaluating PSO algorithms from a parallel perspective and reviews the fundamental issues of

parallel PSO that algorithm designers must consider when proposing a improvement to PSO.

Speculative evaluation, described in Chapter 5, accelerates convergence for objective

functions which are slow to evaluate and which show little benefit from increased swarm

sizes. In speculative evaluation, at each step, the objective function is evaluated not only

at each particle’s current location, but also at several likely locations of the particle at the

following iteration. Speculative evaluation allows the algorithm to proceed two iterations at a

time with the exact same computations and numerically identical answers as in the standard

algorithm. Our experiments show that for some objective functions, additional processors

are more effective when used for speculative evaluation than for increasing the swarm size.

In the new “apiary” topology, described in Chapter 6, particles are organized into semi-

independent subswarms and occasionally send messages to neighbors in other subswarms. By

comparison, in PSO with islands used in parallel genetic algorithms, each processor manages

and evaluates a set of particles which occasionally migrate between processors to increase

diversity. However, migration is unnecessary in parallel PSO, where communication is not

defined by membership in a group but rather by messages sent to neighbors. Unlike existing

islands-based approaches in PSO [19, 20], a new topology does not require global coordination,

heavy communication, or other complicated schemes that are inefficient in parallel. Our work

shows that communication in an apiary is compatible with asynchronous iteration which

improves parallel performance, especially for large clusters or function with heterogeneous

evaluation times. For the apiary topology in an asynchronous MapReduce programming

model, the PSO map function is very similar to that of MapReduce PSO with a standard

topology. The map function performs a predetermined number of iterations and outputs the

updated state of the apiary along with “message” records. These messages are automatically

routed to a subsequent reduce task associated with the appropriate subswarm. The apiary

9

www.manaraa.com

approach is simple, economical, and improves the performance of PSO both in serial and in

parallel.

Chapter 7 argues that the standard practice of evaluating a PSO variant by reporting

function values with respect to the number of function evaluations is inadequate for evaluating

PSO in a parallel environment. Results that demonstrate an improvement only for serial PSO

are no longer relevant. A variant of PSO should be evaluated, first by how its performance

scales independently of communication, and then by the task interactions and communication

that it requires. This information, combined with details about a particular objective

function and computational environment, determine the parallel behavior of the PSO variant.

While this discussion is focused on Particle Swarm Optimization, the issues and results have

implications for parallel optimization algorithms in general.

1.4.3 Inference of Search Directions (Part III)

In a few limited cases, optimization is embarrassingly parallel. For example, for an arbitrary

unknown objective function, no algorithm performs better than random search on average, by

the No Free Lunch theorem[21]. Random search running independently on multiple processors

does not require any communication, so if no exploitable properties are known to hold for a

given objective function, communication cannot offer any benefit. Likewise, optimization

is embarrassingly parallel if it is known to be separable with respect to a given set of basis

vectors, or orientation. An n-dimensional function is separable if it can be expressed as

f(x) =
∑n

i=1 fi(xi). Separability is a well-known property in optimization and is shared

by many benchmark functions and some real-life problems. If a function is known to be

separable, then optimization is embarrassingly parallel along individual dimensions. However,

the definition of separability is fairly restrictive and does not necessarily apply directly to an

objective function of interest.

Even when a function is not separable, it may be partially separable along certain

dimensions or small groups of dimensions. Furthermore, it may be partially separable in

10

www.manaraa.com

some areas of the search space. Sensitivity to scale and rotation is a common challenge

in optimization, and some algorithms attempt to adapt to the search space and function

landscape. CMA-ES and differential evolution both take advantage of an assumption that

vectors between good values are promising directions for future candidate positions. Such

approaches can be interpreted as performing a kind of dimensionality reduction to find

latent separability in a function relative to different coordinate space. Unfortunately, parallel

evolutionary algorithms inherently require communication every iteration for crossover, and

there are limits to how much this parallelism can be improved through modifications to

evolutionary algorithms such as those considered in Part II.

Part III develops a statistical model for inference of search directions that is designed

for building inherently parallel optimization algorithms. Chapter 8 presents this model and

demonstrates its behavior in inferring search directions. As part of this model, the chapter

introduces a new conjugate prior of the Bingham distribution that makes it possible to

perform Bayesian inference on directions. The prior distribution in the model favors search

directions clustered around the direction that is orthogonal to those being used by other

processors. The posterior distribution is updated by observations of successful directions,

such as those with evidence of separability. This statistical model provides a foundation for

building a wide range of models and algorithms for parallel optimization.

1.5 Publications

Many of the chapters in this work have been published previously as peer reviewed conference

papers. The following list provides citations for each of these papers:

• Chapter 2: A. McNabb, C. Monson, and K. Seppi. Parallel PSO using MapReduce. In

Proc. IEEE Congress on Evolutionary Computation. 2007.

11

www.manaraa.com

• Chapter 3: A. McNabb, J. Lund, and K. Seppi. Mrs: MapReduce for Scientific

Computing in Python. In Proc. Python for High Performance and Scientific Computing.

2012.

• Chapter 5: M. Gardner, A. McNabb, and K. Seppi. Speculative Evaluation in Particle

Swarm Optimization. In Proc. Parallel Problem Solving from Nature, 2010.

• Chapter 6: A. McNabb and K. Seppi. The Apiary Topology: Emergent Behavior in

Communities of Particle Swarms. In Proc. Parallel Problem Solving from Nature. 2012.

• Chapter 7: A. McNabb and K. Seppi. Serial PSO results are irrelevant in a multi-core

parallel world. In Proc. IEEE Congress on Evolutionary Computation. 2014.

12

www.manaraa.com

Part I

Programming Framework for Parallel Optimization

Parallel optimization research requires the flexibility to experiment with a variety of

approaches to parallelization. Unfortunately, algorithms implemented in low-level libraries

are not flexible enough to allow for major changes in design. In Chapter 2, we demonstrate

that the MapReduce model is a natural fit for Particle Swarm Optimization. However,

implementations of MapReduce designed for big data have high per-iteration overhead that

makes them unnecessarily inefficient for iterative algorithms such as optimization algorithms.

Chapter 3 introduces a lightweight MapReduce framework designed for iterative algorithms

that is flexible enough for optimization research. Chapter 4 augments the MapReduce model

to better support iterative algorithms, including asynchronous iteration. These changes

improve convenience and performance which enable experimentation with various approaches

to parallel PSO, such as those developed in Part II.

13

www.manaraa.com

Chapter 2

Parallel PSO Using MapReduce

Published in Proceedings of CEC 2007 [22]

This chapter describes how to formulate parallel PSO within the MapReduce model.

In the process, it demonstrates the convenience of MapReduce for parallel PSO and lays the

foundation for PSO variants in subsequent chapters. These algorithms, while varying widely

in the details of communication, are all based on the approach used by standard parallel

PSO in MapReduce.

Abstract

In optimization problems involving large amounts of data, such as web content, commercial

transaction information, or bioinformatics data, individual function evaluations may take

minutes or even hours. Particle Swarm Optimization (PSO) must be parallelized for such

functions. However, large-scale parallel programs must communicate efficiently, balance work

across all processors, and address problems such as failed nodes.

We present MapReduce Particle Swarm Optimization (MRPSO), a PSO implementa-

tion based on the MapReduce parallel programming model. We describe MapReduce and

show how PSO can be naturally expressed in this model, without explicitly addressing any

of the details of parallelization. We present a benchmark function for evaluating MRPSO

and note that MRPSO is not appropriate for optimizing easily evaluated functions. We

demonstrate that MRPSO scales to 256 processors on moderately difficult problems and

tolerates node failures.

14

www.manaraa.com

2.1 Introduction

Particle Swarm Optimization (PSO) is an optimization algorithm that was inspired by

experiments with simulated bird flocking [15]. This evolutionary algorithm has become

popular because it is simple, requires little tuning, and has been found to be effective for a

wide range of problems. Often a function that needs to be optimized takes a long time to

evaluate. A problem using web content, commercial transaction information, or bioinformatics

data, for example, may involve large amounts of data and require minutes or hours for each

function evaluation. To optimize such functions, PSO must be parallelized.

Unfortunately, large-scale PSO, like all large-scale parallel programs, faces a wide

range of problems. Inefficient communication or poor load balancing can keep a program

from scaling to a large number of processors. Once a program successfully scales, it must still

address the issue of failing nodes. For example, assuming that a node fails, on average, once

a year, then the probability of at least one node failing during a 24-hour job on a 256-node

cluster is 1− (1− 1/365)256 = 50.5%. On a 1000-node cluster, the probability of failure rises

to 93.6%.

Google faced these same problems in large-scale parallelization, with hundreds of

specialized parallel programs that performed web indexing, log analysis, and other operations

on large datasets. A common system was created to simplify these programs. Google’s

MapReduce is a programming model and computation platform for parallel computing [23].

It allows simple programs to benefit from advanced mechanisms for communication, load

balancing, and fault tolerance.

MapReduce Particle Swarm Optimization (MRPSO) is a parallel implementation of

Particle Swarm Optimization for computationally intensive functions. MRPSO is simple,

flexible, scalable, and robust because it is designed in the MapReduce parallel programming

model.

Since MRPSO is intended for computationally intensive functions, we use the problem

of training a radial basis function (RBF) network as representative of optimization problems

15

www.manaraa.com

which use large amounts of data. An RBF network is a simple function approximator that

can be trained by PSO, with difficulty proportional to the amount of training data.

Section 2.2 reviews standard PSO and prior work in parallel PSO. Section 2.3 discusses

the MapReduce model in detail, including a simple example. Section 2.4 describes how

Particle Swarm Optimization can be cast in the MapReduce model, without any explicit

reference to load balancing, fault tolerance, or any other problems associated with large-

scale parallelization. Section 2.5 shows that MRPSO scales well through 256 processors on

moderately difficult problems but should not be used to optimize trivially evaluated functions.

2.2 Particle Swarm Optimization

In Particle Swarm Optimization, a set of particles explores the input space of a function.

Each particle has a position and velocity, which are updated during each iteration of the

algorithm. Additionally, each particle remembers its own best position so far (personal best)

and the best position found by any particle in the swarm (global best).

Initially, each particle has a random position and velocity drawn from a function-

specific feasible region. The particle evaluates the function and updates its velocity such that

it is drawn towards its personal best point and the global best point. This influence towards

promising locations is strong enough that the particle eventually converges but weak enough

that the particles explore a wide area.

The following equations are used in constricted PSO to update the position x and

velocity v of a particle with personal best xP and global best g:

vt+1 = χ
[
vt + φ1 U()⊗ (xP − xt) + φ2 U()⊗ (g − xt)

]
(2.1)

xt+1 = xt + vt+1 (2.2)

16

www.manaraa.com

where φ1 = φ2 = 2.05, U() is a vector of samples drawn from a standard uniform distribution,

and ⊗ represents element-wise multiplication. The constriction χ is defined to be:

χ =
2κ

|2− φ−
√
φ2 − 4φ|

where κ = 1.0 and φ = φ1 + φ2 [24].

There are several parallel adaptations of Particle Swarm Optimization. Synchronous

PSO, like MRPSO, preserves the exact semantics of serial PSO [25]. In contrast, asynchronous

variants do not preserve the exact semantics of serial PSO, but instead focus on better load

balancing [26, 27]. Other variants propose different topologies to limit communication

among particles and between groups of particles [28, 29]. Parallel PSO has been applied

to applications including antenna design [30] and biomechanics [26] and adapted to solve

multiobjective optimization problems [29, 31].

2.3 MapReduce

MapReduce is a functional programming model that is well suited to parallel computation.

In the model, a program consists of a high-level map function and reduce function which

meet a few simple requirements. If a problem is formulated in this way, it can be parallelized

automatically.

In MapReduce, all data are in the form of keys with associated values. For example,

in a program that counts the frequency of occurrences for various words, the key would be a

word and the value would be its frequency.

A MapReduce operation takes place in two main stages. In the first stage, the map

function is called once for each input record. At each call, it may produce any number of

output records. In the second stage, this intermediate output is sorted and grouped by key,

and the reduce function is called once for each key. The reduce function is given all associated

17

www.manaraa.com

values for the key and outputs a new list of values (often “reduced” in length from the original

list of values).

The following notation and example are based on the original presentation [23].

2.3.1 Map Function

A map function is defined as a function that takes a single key-value pair and outputs a list

of new key-value pairs. The input key may be of a different type than the output keys, and

the input value may be of a different type than the output values:

map : (K1, V1)→ list((K2, V2))

Since the map function only takes a single record, all map operations are independent

of each other and fully parallelizable.

2.3.2 Reduce Function

A reduce function is a function that reads a key and a corresponding list of values and

outputs a new list of values for that key. The input and output values are of the same type.

Mathematically, this would be written:

reduce : (K2, list(V2))→ list(V2)

A reduce operation may depend on the output from any number of map calls, so no

reduce operation can begin until all map operations have completed. However, the reduce

operations are independent of each other and may be run in parallel.

Although the formal definition of map and reduce functions would indicate building

up a list of outputs and then returning the list at the end, it is more convenient in practice

to emit one element of the list at a time and return nothing. Conceptually, these emitted

elements still constitute a list.

18

www.manaraa.com

Program 1 WordCount Map

def mapper(key, value):
for word in value.split():

emit((word, 1))

Program 2 WordCount Reduce

def reducer(key, value list):
total = sum(value list)
emit(total)

2.3.3 Example: WordCount

The classic MapReduce example is WordCount, a program which counts the number of

occurrences of each word in a document or set of documents. For this program, the input

and output sets are:

K1 : N

V1 : set of all strings

K2 : set of all strings

V2 : N

In WordCount, the input value is a line of text. The input key is ignored but arbitrarily

set to be the line number for the input value. The output key is a word, and the output

value is its count.

The map function, shown as Program 1, splits the input line into individual words.

For each word, it emits the key-value pair formed by the word and the value 1.

The reduce function, shown as Program 2, takes a word and list of counts, performs a

sum reduction, and emits the result. This is the only element emitted, so the output of the

reduce function is a list of size 1.

19

www.manaraa.com

These map and reduce functions are deceptively simple. The problem itself is inherently

difficult—implementing a scalable distributed word count system with fault-tolerance and

load-balancing is not easy. However all of the complexity is found in the surrounding

MapReduce infrastructure rather than in the map and reduce functions. Note that the reduce

function does not even output a key, since the MapReduce system already knows what key it

passed in.

The data given to map and reduce functions, as in this example, are generally as

fine-grained as possible. This ensures that the implementation can split up and distribute

tasks. The MapReduce system consolidates the intermediate output from all of the map

tasks. These records are sorted and grouped by key before being sent to the reduce tasks.

If the map tasks emit a large number of records, the sort phase can take a long

time. MapReduce addresses this potential problem by introducing the concept of a combiner

function. If a combiner is available, the MapReduce system will locally sort the output from

several map calls on the same machine and perform a “local reduce” using the combiner

function. This reduces the amount of data that must be sent over the network for the

main sort leading to the reduce phase. In WordCount, the reduce function would work as a

combiner without any modifications.

2.3.4 Benefits of MapReduce

Although not all algorithms can be efficiently formulated in terms of map and reduce functions,

MapReduce provides many benefits over other parallel processing models. In this model, a

program consists of only a map function and a reduce function. Everything else is common

to all programs. The infrastructure provided by a MapReduce implementation manages

all of the details of communication, load balancing, fault tolerance, resource allocation, job

startup, and file distribution. This runtime system is written and maintained by parallel

programming specialists, who can ensure that the system is robust and optimized, while

20

www.manaraa.com

those who write mappers and reducers can focus on the problem at hand without worrying

about implementation details.

A MapReduce system determines task granularity at runtime and distributes tasks to

compute nodes as processors become available. If some nodes are faster than others, they will

be given more tasks, and if a node fails, the system automatically reassigns the interrupted

task.

2.3.5 MapReduce Implementations

Google has described its MapReduce implementation in published papers and slides, but it

has not released the system to the public. Presumably the implementation is highly optimized

because Google uses it to produce its web index.

The Apache Lucene project has developed Hadoop, an Java-based open-source clone

of Google’s closed MapReduce platform. The platform is relatively new but rapidly maturing.

At this time, Hadoop overhead is significant but not overwhelming and is expected to decrease

with further development.

2.4 MapReduce PSO (MRPSO)

In an iteration of Particle Swarm Optimization, each particle in the swarm moves to a new

position, updates its velocity, evaluates the function at the new point, updates its personal

best if this value is the best seen so far, and updates its global best after comparison with its

neighbors. Except for updating its global best, each particle updates independently of the

rest of the swarm.

Due to the limited communication among particles, updating a swarm can be for-

mulated as a MapReduce operation. As a particle is mapped, it receives a new position,

velocity, value, and personal best. In the reduce phase, it incorporates information from other

particles in the swarm to update its global best. The MRPSO implementation conforms to

21

www.manaraa.com

(3, “1, 2, 3, 4; 1.7639, 2.5271; 52.558, 50.444; 9.4976; 1.7639, 2.5271; 9.4976;−1.0151,−2.0254; 5.1325”)

Figure 2.1: A particle as a key-value pair

the MapReduce model while performing the same calculations as standard Particle Swarm

Optimization.

2.4.1 Particle Representation and Messages

In MRPSO, the input and output sets are:

K1 : N

V1 : set of all strings

K2 : N

V2 : set of all strings

Each particle is identified by a numerical id key, and particle state is represented as

a string. The state of a particle consists of its dependents list (neighbors’ ids), position,

velocity, value, personal best position, personal best value, global best position, and global

best value. The state string is a semicolon-separated list of fields. If a field is vector valued,

its individual elements are comma-separated. The state string is of the form:

deps; pos; vel; val; pbpos; pbval; gbpos; gbval

A typical particle is shown in Figure 2.1. This particle is exploring the function

f(x) = x2
1 + x2

2. Its components are interpreted as follows:

3 particle id

1, 2, 3, 4 dependents (neighbors)

1.7639, 2.5271 current position (x1, x2)

22

www.manaraa.com

Program 3 MRPSO Map

def mapper(key, value):
particle = Particle(value)

Update the particle:
new position, new velocity = pso motion(particle)
y = evaluate function(new position)
particle.update(new position, new velocity, y)

Emit a message for each dependent particle:
message = particle.make message()
for dependent id in particle.dependent list:

if dependent id == key:
particle.gbest candidate(particle.pbest position, particle.pbest value)

else:
emit((dependent id, repr(message)))

Emit the updated particle without changing its id:
emit((key, repr(particle)))

Program 4 MRPSO Reduce

def reducer(key, value list):
particle = None
best = None

Of all of the inputs, find the record with the best gbest value:
for value in value list:

record = Particle(value)
if (best is None) or (record.gbest value <= best.gbest value):

best = record
if not record.is message():

particle = record

Update the gbest of the particle and emit:
if particle is not None:

particle.gbest candidate(best.gbest position, best value)
emit(repr(particle))

else:
emit(repr(best))

23

www.manaraa.com

52.558, 50.444 velocity (x1, x2)

9.4976 value of f(x) at the current position

(1.76392 + 2.52712)

1.7639, 2.5271 personal best position (x1, x2)

9.4976 personal best value

−1.0151,−2.0254 global best position (x1, x2)

5.1325 global best value

MRPSO also creates messages, which are like particles except that they have empty

dependents lists. A message is sent from one particle to another as part of the MapReduce

operation. In the reduce phase, the recipient reads the personal best from the message and

updates its global best accordingly.

2.4.2 MRPSO Map Function

The MRPSO map function, shown as Program 3, is called once for each particle in the

population. The key is the id of the particle, and the value is its state string representation.

The PSO mapper finds the new position and velocity of the particle and evaluates the function

at the new point. It then calls the update method of the particle with this information. In

addition to modifying the particle’s state to reflect the new position, velocity, and value, this

method replaces the personal best if a more fit position has been found.

The key to implementing PSO in MapReduce is communication between particles.

Each particle maintains a dependents list containing the ids of all neighbors that need

information from the particle to update their own global bests. After the map function

updates the state of a particle, it emits messages to all dependent particles. When a message

is emitted, its corresponding key is the id of the destination particle, and its value is the

string representation, which includes the position, velocity, value, and personal best of the

source particle. The global best of the message is also set to the personal best.

24

www.manaraa.com

If the particle is a dependent of itself, as is usually the case, the map function updates

the global best of the particle if the personal best is an improvement. Finally, the map

function emits the updated particle and terminates.

2.4.3 MRPSO Reduce Function

The MRPSO reduce function, shown as Program 4, receives a key and a list of all associated

values. The key is the id of a particular particle in the population. The values list contains

the newly updated particle and a message from each neighbor. The PSO reducer combines

information from all of these messages to update the global best position and global best

value of the particle. The reducer emits only the updated particle.

Program 4 also works as a combiner. If no particle is found in the input value list, the

function combines the list by emitting only the best message. This message is then sent to

the reducer.

2.4.4 Map and Reduce in Context

When a particle is emitted by a reducer, it is fully updated. In the map phase, it updates,

moves, and evaluates, and then updates its personal best. In the reduce phase, it updates its

global best after receiving messages from all of its neighbors in the swarm. A map phase

followed by a reduce phase performs an iteration of the swarm that is exactly equivalent to

an iteration in single-processor PSO.

Observe that the MRPSO implementation does not explicitly deal with communication

across nodes, load balancing, or node failures. The MapReduce formulation of the problem

allows the work to be divided in small enough pieces that the MapReduce system can balance

work across processors and deal with failed nodes.

25

www.manaraa.com

2.5 Results and Remarks

2.5.1 Implementation

Our experiments involve both a serial and a parallel implementation of Particle Swarm

Optimization. The two Python programs share code for particle motion and for performing

evaluations of the objective function. Particle motion is a straightforward implementation of

(2.1) and (2.2).

The serial PSO program creates a swarm, or list of particle objects. During each

iteration, it updates the velocity, position, value, and personal best of all of the particles. It

then finds the global best, updates all of the particles, and continues to the next iteration.

The MRPSO program performs the same operations as the sequential code. However,

instead of performing PSO iterations internally, it delegates this work to the Hadoop Map-

Reduce system. After creating the initial swarm, it saves the particles to a file as a list of

key-value pairs, as in Figure 2.1. This file is the input for the first MapReduce operation.

Hadoop performs a sequence of MapReduce operations, each of which evaluates a single

iteration of the particle swarm. The output of each MapReduce operation represents the

state of the swarm after the iteration of PSO, and this output is used as the input for the

following iteration. In each MapReduce operation, Hadoop calls map (Program 3) and reduce

(Program 4) in parallel to update particles in the swarm. Note that the code that we have

shown for these two functions is the actual implementation.

2.5.2 Environment

Performance experiments were run on Brigham Young University’s Marylou4 supercomputer.

Marylou4 is a cluster of Dell 1955 blade servers. Each node has four 2.6 GHz Xeon cores and

8 GB of memory. In serial experiments, we reserved one processor per node, and in parallel

experiments, we used all four processors on each machine. Hadoop version 0.10 in Java 1.6

was used as the MapReduce system for all experiments. Both MRPSO and serial PSO were

26

www.manaraa.com

run in a Python 2.5 interpreter. Hadoop’s streaming system provided the interface between

Java and Python code.

2.5.3 Methodology

MRPSO performs the same calculations as a serial implementation of PSO. With the same

number of particles and iterations, MRPSO and serial PSO will achieve the same level of

accuracy. Comparing the quality of solutions is useful only to verify correctness. However,

the average execution time per iteration is important because it shows whether the parallel

implementation is an improvement. Unless noted otherwise, the first iteration of each run

was excluded from averages because they often ran slightly faster or slower than the rest of

the runs.

Each swarm consists of 1,000 fully connected particles. Since each particle has 1,000

neighbors, the dependents list is quite large. Since the sociometry is static in this case, an

explicit list is not necessary. To save space, we replaced the full dependents list field in the

string representation with the special string “all-1000.” When a particle saw this string, it

emitted messages for all 1,000 particles in the swarm as if the dependents list were included.

MapReduce has many parameters involving issues such as how to partition the input

and how many tasks to run concurrently on each machine. We decided how to set these

parameters after performing some initial experiments with n nodes and p processors for

various values of n and p. The number of tasks per node, which indicates how many total

map and reduce functions can be executing concurrently on one physical computer, was set to

4 (the number of processors per node). The number of map tasks per job, which determines

how finely to partition the input, was set to p, the total number of processors. We used

log2 n, but not more than 4, reduce tasks per job. We also configured the MapReduce system

to use the reduce function as a combiner.

We used speedup as a measure of scalability. However, there are enough variants

of speedup that the measure is worse than useless without precise clarification. Speedup

27

www.manaraa.com

is defined as the ratio of the serial runtime of the best sequential algorithm for solving a

problem to the time taken by the parallel algorithm to solve the same problem on p processing

elements [32]. Thus the speedup with p processors is:

Sp =
t1
tp

(2.3)

The definition of speedup is ambiguous as to what constitutes the best sequential algorithm.

Since MRPSO is a reformulation of PSO that performs the same operations, we use our

standard single-processor PSO implementation as the best sequential algorithm. This

implementation and the MRPSO implementation are written in the same language, share

common code, and run on the same hardware.

2.5.4 RBF Network Training

We used a RBF network training function as our primary test function because it is represen-

tative of functions that use large amounts of data. An RBF network is a sum of radial basis

functions and is used as a function approximator [33]. The following equation describes the

activation function of an RBF network:

f(x) =

nbases∑
i=1

si√
2π

exp


dinput∑

j=1

wij
625

(xi − cij)2

 1
2

 (2.4)

The RBF network f is composed of nbases Gaussian basis functions. Basis i has center

ci, input weights wi (precision), and output scale si.

Given a set of training points with known values, a particle swarm can minimize the

sum square error function to find the parameters of the RBF network that best fits the data.

Thus, the training problem becomes an optimization problem of the error function:

g(X,y) =

npoints∑
i=1

(f(Xi)− yi)2 (2.5)

28

www.manaraa.com

where X are the training points and y are the corresponding values. A particle swarm finds

parameters for the RBF network f in (2.4) that minimize the error function g shown in (2.5).

To a particle swarm, an RBF network with one-dimensional input and four basis

functions is represented as a 12-dimensional vector with 3 parameters for each of the 4 bases,

for example:

(s1, w11, c11, s2, w21, c21, s3, w31, c31, s4, w41, c41)

= (32, 1.3,−22, 11, 37, 18, 45, 4.3,−7.8, 1.4, 11, 0.53) (2.6)

2.5.5 RBF Results

We used PSO for the 12-dimensional problem of optimizing weights for an RBF network.

The function minimized by PSO was g in (2.5); in this problem, a particle’s position is a

vector of weights for an RBF network. The training data was a set of 10,000 samples from

the RBF network of (2.6).

We ran PSO for the serial implementation and for MRPSO with 1, 4, 8, 16, 32, 64, and

128 processors. In each case, we report the average execution time of at least 70 iterations

of PSO. For MRPSO, the estimated standard deviation of execution times ranged from 2.3

seconds for 8 processors to 6.7 seconds for 128 processors. For serial PSO, the estimated

standard deviation was 34 seconds (2.8% of the average time). The execution times are shown

in Figure 2.2.

With 10,000 training points, each evaluation of g took about 1.2 seconds. Although

this is not a very long time, it is much longer than common PSO benchmark functions. In

fact, a single iteration in the serial implementation took 1,230 seconds (20.5 minutes) to

complete. A training set of 10,000 data points is not large, and a function that takes 1.2

seconds to compute is not slow. However, even with this function, parallelization made a

huge difference: with 64 processors, each iteration took 65 seconds.

29

www.manaraa.com

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 p

e
r

It
e
ra

ti
o
n
 (

se
co

n
d

s)

Number of Processors

RBF MRPSO
Serial Execution Time

Figure 2.2: Execution times per iteration for RBF with 10,000 points

The speedup, as calculated using (2.3), is shown in Figure 2.3. Improvement was

dramatic until 64 processors, but beyond this point, implementation and communication

overhead hindered further improvement. For each iteration with 128 processors, the amount

of computation per processor was only 9.6 seconds.

2.5.6 Sphere

A MapReduce runtime system introduces overhead due to job startup, communication, and

sorting. Additional overhead is incurred by MRPSO’s inter-particle messages. If the function

being optimized is simple enough that particle communication takes longer than function

evaluation, then MRPSO should not be used.

The sphere function is: f(x) = x2
1 +x2

2 + · · ·+x2
n. Like all of the standard benchmarks,

it is easily evaluated. In our serial PSO, it took less than a millisecond per evaluation on

12-dimensional sphere with 1,000 particles. For parallelization to be useful, there would have

to be almost no additional overhead. In MapReduce, the overhead to process each particle

30

www.manaraa.com

 1

 2

 4

 8

 16

 32

 1 4 8 16 32 64 128

S
p

e
e
d

u
p

Number of Processors

RBF MRPSO
Linear Speedup

Figure 2.3: Speedup for RBF with 10,000 data points

would certainly be expected to take much longer than a millisecond (on the cluster, round

trip time alone is 0.084 milliseconds). In Hadoop 0.10, the amount of time to evaluate sphere

was dominated by the time needed by the MapReduce runtime system.

Figure 2.4 shows the speedup of MRPSO with 1,000 particles on 12-dimensional sphere.

The baseline is a standard serial implementation which completed each iteration in 0.867

seconds on average. Even at its best, MRPSO took 41.5 seconds per iteration, which is many

times slower than a millisecond. MRPSO should not be used for easily evaluated functions.

The sphere function serves another useful purpose by measuring the amount of MRPSO

overhead. Since each evaluation of sphere takes less than a millisecond to compute, the

function is essentially a null operation compared to the total execution time. Overlaying the

graph of RBF execution times with the graph of sphere execution times shows how much

of the time was spent on function evaluation and how much was spent on overhead. In

Figure 2.5, the time between the two curves approximates the amount of RBF computation

time, while the line beneath the lower curve shows the amount of overhead. As the number

31

www.manaraa.com

1/256

1/64

1/16

1/4

 1

 4

 16

 64

 1 4 8 16 32 64 128

S
p

e
e
d

u
p

Number of Processors

Sphere MRPSO
RBF MRPSO

Linear Speedup

Figure 2.4: Speedup for the sphere function compared to the speedup for RBF. Using MRPSO
for sphere would not be appropriate.

of processors increases to 128, the two curves nearly meet. After this point, each additional

processor increases overhead more than it contributes to computation. Some of the overhead

represented by this curve is unavoidable, but much of it will decrease as Hadoop continues to

improve.

2.5.7 RBF With 1,000,000 Points

The earlier RBF experiments used 10,000 training points and took 1.2 seconds to compute one

function evaluation. Although MRPSO scaled well for this function, it was not particularly

long-running function. However, with 100 times as many data points, the RBF network error

function from (2.5) takes 100 times longer to run. At 120 seconds per function evaluation,

training an RBF network with 1,000,000 training points is noticeably slow. Over 10 serial

PSO experiments, the average time per iteration was 120,000 seconds (33 hours), with an

estimated standard deviation of 710 seconds (12 minutes).

32

www.manaraa.com

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 p

e
r

It
e
ra

ti
o
n
 (

se
co

n
d

s)

Number of Processors

RBF MRPSO
Overhead (Sphere MRPSO)

Figure 2.5: Execution times per iteration for RBF with 10,000 data points and implementation
overhead as measured by sphere.

MRPSO experiments were similar to the previous experiments. However, the first

iteration was not dropped because of the sparsity of data. Also, the 256-processor experiments

were run with 500 map tasks instead of 256 because of the need for load balancing, as discussed

below.

Figure 2.6 shows the speedup of RBF network training in MRPSO. Note that the

RBF nearly matches linear speedup through 128 processors. The speedup with 16 processors

is 14.9, and the speedup with 128 processors is 101.

2.5.8 Load Balancing

In each experiment with up to 128 processors, the number of map tasks was equal to the total

number of processors. In these experiments, the MapReduce system performed static load

balancing. It split the input into similarly sized tasks and assigned a task to each processor.

33

www.manaraa.com

 1

 2

 4

 8

 16

 32

 64

 128

 256

 4 8 16 32 64 128 256

S
p

e
e
d

u
p

Number of Processors

RBF 1,000,000
Linear Speedup

Figure 2.6: Speedup for RBF with 1,000,000 data points

Alternatively, the number of map tasks can be set to the total number of particles.

In this case, there would be 1,000 map tasks, with exactly one particle in each map task.

However, experimentation showed that this increased overhead.

With 256, we found that it was relatively common for a machine to experience a

network error and lose a map task. When this happened, the MapReduce system recognized

the fault and restarted the task. The iteration completed successfully, but the reduce tasks

could not begin until the last map task completed. With 256 processors, iterations finished

in less than 600 seconds in the normal case, but took more than 1,000 seconds in the event of

a failure.

To reduce the variance, the number of map tasks was set to 500 instead of 256. Since

there were more map tasks than processors, Hadoop performed dynamic load balancing, and

if a task failed, the reassigned map task would complete more quickly because it included 2

particles instead of 4. After making this change, the slowest iteration time was 865 seconds

34

www.manaraa.com

rather than 1,078 seconds. The more processors in use, the greater the need for dynamic

load balancing.

2.6 Future Work and Conclusions

If an MRPSO swarm has fewer particles than the number of available processors, then the

extra processors are idle. With more particles than the number of processors, the MapReduce

system can dynamically balance the load. This suggests that with thousands of processors,

MRPSO would perform best with a very large number of particles.

The number of messages emitted by the map function is proportional to the size of

the particle’s dependents list. Because of this, each particle should have a limited number

of neighbors. MRPSO makes it easy to control the swarm sociometry, but it is still not

clear which sociometries work best in which contexts, and very little work has been done

on large swarms. Experiments with more sparsely connected sociometries such as rings,

directed rings, and tribes in MRPSO might show how to reduce communication and improve

optimization. [34]

Since a particle’s dependents list is part of its state, it can be updated during either

the map or the reduce phase. Dynamic changes to the dependents list might affect the

performance of PSO.

MRPSO makes no assumptions about whether the sociometry is static or dynamic. If

the sociometry is assumed to be static, then the map function could refrain from emitting

unnecessary messages. In this case, a message would only be emitted in iterations where a

particle updates its personal best. This might reduce the average communication overhead.

In summary, we have shown that Particle Swarm Optimization can be naturally

adapted to the MapReduce programming model. With a function that took 2 minutes

to evaluate, MapReduce Particle Swarm Optimization scaled well through 256 processors.

MRPSO addresses the problems that face highly parallel programs because it builds on a

system that is specifically designed be robust.

35

www.manaraa.com

Chapter 3

Mrs: MapReduce for Scientific Computing in Python

Published in Proceedings of PyHPC 2012 [35]

This chapter describes a flexible and convenient MapReduce system. Its flexibility

makes it suitable for a wide range of parallel optimization algorithms, and its convenience

enables rapid prototyping and experimentation with novel algorithms. Chapter 4 builds on the

basic system to adapt the MapReduce model to give better performance for computationally

intensive iterative programs such as optimization algorithms without sacrificing convenience

and flexibility.

Abstract

The MapReduce parallel programming model is designed for large-scale data processing,

but its benefits, such as fault tolerance and automatic message routing, are also helpful for

computationally-intensive algorithms. However, popular MapReduce frameworks such as

Hadoop are slow for many scientific applications and are inconvenient on supercomputers

and clusters which are common in research institutions.

Mrs is a Python-based MapReduce framework that is well suited for scientific com-

puting. We present comparisons of programs and run scripts to argue that Mrs is more

convenient than Hadoop, the most popular MapReduce implementation. We also demonstrate

that Mrs outperforms Hadoop for several types of problems that are relevant to scientific

computing. In particular, Mrs demonstrates per-iteration overhead of about 0.3 seconds for

36

www.manaraa.com

Particle Swarm Optimization, while Hadoop takes at least 30 seconds for each MapReduce

operation, a difference of two orders of magnitude.

3.1 Introduction

MapReduce [23] has quickly become a popular paradigm for large scale data intensive analysis

and has also been applied to computationally intensive programs. It has been used for iterative

algorithms such as k-means [16], logistic regression [17], backpropagation [17], independent

component analysis [17], expectation maximization [17], support vector machines [17], genetic

algorithms [18], and particle swarm optimization (PSO) [36]. The popularity of MapReduce

may be attributed to its simplicity and availability.

Unfortunately, most current MapReduce frameworks exhibit poor performance in

scientific applications [16–18, 36] and are ill suited to the computational environments that

are most important for scientific computing. Many universities and research institutions have

supercomputers, but these are not tied to any particular parallel processing technology. Most

popular MapReduce frameworks are designed for large-scale data processing in datacenters and

require a dedicated cluster and extensive configuration. Such frameworks use technologies that

make MapReduce unnecessarily complex to program and difficult to run on supercomputers

and clusters that are common in research institutions. Furthermore, performance is not

optimized for computationally intensive applications, particularly iterative algorithms.

Mrs is a lightweight Python-based MapReduce implementation. It is designed to make

MapReduce programs easy to write, easy to run, and fast. Python helps make these design

goals possible. Mrs programs are easy to write because of the convenience and readability of

Python. The Mrs API is also designed to avoid the need for unnecessary boilerplate. Mrs

programs are easy to run because it relies only on the Python standard library and works

with any job scheduler or filesystem. Mrs programs are fast because Mrs is the product of

multiple significant rewrites to improve efficiency and reduce overhead, and Python makes

such restructuring manageable. Furthermore, Python provides powerful approaches for

37

www.manaraa.com

accelerating programs without sacrificing simplicity, such as running in PyPy or integrating

with custom C modules. All of these strengths contribute to making Mrs an effective platform

for scientific computing.

Mrs offers both subjective improvements and performance improvements over Hadoop,

the most popular MapReduce framework. We evaluate the ease of programming and readabil-

ity by comparing a Mrs program written in Python with a functionally equivalent Hadoop

program written in Java. We show the simplicity in running a Mrs job on a supercomputer

with a PBS job scheduler relative to a Hadoop job in the same environment. We also demon-

strate the performance advantages of Mrs over Hadoop using three applications: WordCount

in Project Gutenberg, a collection of 31,173 documents; a computationally intensive estimator

of π ranging from 1 to 109 samples; and Particle Swarm Optimization, an empirical function

optimization algorithm. In all cases, Hadoop exhibits significant overhead. Despite the

inherent performance advantage of Java over Python, the Mrs program maintains a significant

performance advantage when task times are less than around 32 seconds, which is extended

to around 40 seconds when using a C module in the innermost loop and using the PyPy

interpreter. This performance advantage is particularly significant in the context of iterative

algorithms, where overhead is incurred each iteration.

Section 3.2 reviews the MapReduce programming model and other MapReduce imple-

mentations. Section 3.3 discusses the context of scientific computing and the specific needs

that it requires of a MapReduce implementation. Section 3.4 describes the programming

model and the design of Mrs, including the advantages and challenges of using Python to

implement a MapReduce system. Section 3.5 presents results showing the benefits of Mrs

over Hadoop.

3.2 Background and Related Work

MapReduce is a functional programming model that is well suited to parallel computation [23].

In the model, a program consists of a high-level map function and reduce function which

38

www.manaraa.com

process key-value pairs. If a problem is formulated in this way, it can be parallelized

automatically by the MapReduce framework.

A MapReduce operation takes place in two main stages. In the first stage, the map

function is called once for each input record. At each call, it may produce any number of

output records. In the second stage, this intermediate output is sorted and grouped by key,

and the reduce function is called once for each key. The reduce function is given all associated

values for the key and outputs a new list of values (often “reduced” in length from the original

list of values).

A map function is defined as a function that takes a single key-value pair and outputs

a list of new key-value pairs. The input key may be of a different type than the output keys,

and the input value may be of a different type than the output values:

map : (K1, V1)→ list((K2, V2))

A reduce function is a function that reads a key and a corresponding list of values

and outputs a new list of values for that key. The input and output values are of the same

type. Mathematically, this would be written:

reduce : (K2, list(V2))→ list(V2)

Although the formal definition of map and reduce functions would indicate building

up a list of outputs and then returning the list at the end, it is more convenient in practice

to emit one element of the list at a time and return nothing. Conceptually, these emitted

elements still constitute a list.

Figure 3.1 shows the task dependencies in a MapReduce operation. Since the map

function only takes a single record, all map operations are independent of each other and fully

parallelizable. A reduce operation may depend on the output from any number of map calls,

so no reduce operation can begin until all map operations have completed. However, the

39

www.manaraa.com

input

input

input

input

M

M

M

M

R

R

R

R

Figure 3.1: Task dependencies of the map (M) and reduce (R) operations in a MapReduce
program.

reduce operations are independent of each other and may be run in parallel. The data given

to map and reduce functions are generally fine-grained to ensure that the implementation can

split up and distribute tasks. The MapReduce system consolidates the intermediate output

from all of the map tasks. These records are sorted and grouped by key before being sent to

the reduce tasks.

These map and reduce functions are sometimes deceptively simple. Even for applica-

tions which are simple on the surface, it is inherently difficult to implementing a scalable

distributed system with fault-tolerance and load-balancing. In the MapReduce model all of

this complexity is found in the surrounding MapReduce framework rather than in the map

and reduce functions.

Although not all algorithms can be efficiently formulated in terms of map and reduce

functions, MapReduce provides benefits over many other popular parallel processing systems.

In this model, a program consists of only a map function and a reduce function. The

infrastructure provided by a MapReduce implementation manages all of the details of

communication, load balancing, fault tolerance, resource allocation, job startup, and file

distribution. Those who write mappers and reducers can focus on the problem at hand

without worrying about implementation details.

A more complex program may consist of multiple MapReduce stages combined together.

In an iterative MapReduce program, the output of each reduce task is the input to a subsequent

map task. Figure 3.2 shows the task dependencies in an iterative MapReduce operation.

40

www.manaraa.com

input

input

input

input

M

M

M

M

R

R

R

R

M

M

M

M

R

R

R

R

Figure 3.2: Task dependencies of the map (M) and reduce (R) operations in an iterative
MapReduce program.

Iterative programs are more sensitive to the overhead of the MapReduce implementation.

The per-iteration overhead is multiplied by the number of iterations, which can number in

the tens or hundreds of thousands in some applications.

Most MapReduce implementations have targeted large-scale data processing, though a

few systems have focused on improving performance for computationally intensive programs.

Google has described some details of its MapReduce implementation in published papers and

slides, but the system is private. The Apache Lucene project developed Hadoop, an Java-

based open-source MapReduce framework implementation. Hadoop is the largest and most

well known MapReduce implementation, and though it is primarily designed for large-scale

data processing, it has also been used for computationally intensive tasks. HaLoop [37] is an

example of a project intended to improve the performance of Hadoop for iterative programs.

Twister [38] is an alternative MapReduce implementation designed to improve performance

of iterative programs with some sacrifice of fault tolerance. Hadoop remains the most well

known and widely available MapReduce system.

3.3 MapReduce in Scientific Computing

Most MapReduce systems are designed to operate in racks of computers dedicated to

MapReduce processing, but scientific applications use a wide range of computing resources.

A company such as Google or Yahoo with large datacenters might have many thousands of

MapReduce systems and thousands of jobs per day, and dedicated systems in datacenters are

41

www.manaraa.com

appropriate in this situation. However, many different types of clusters are used for scientific

computing. Shared clusters, which are generally large supercomputers, use batch scheduling

systems to coordinate jobs submitted by a wide variety of users. Private clusters, consisting

of a smaller number of commodity workstations or temporarily provisioned cloud nodes, are

used by a single user at a time and do not require a scheduler. Shared and private clusters

are different from dedicated MapReduce clusters. A shared cluster has many users, each of

which has unique software requirements. Supercomputers provide resources that are expected

to meet the needs of the majority of users, and any individual user cannot expect MapReduce

infrastructure to be available. Likewise, most private clusters have no support staff to set up

software. In many cases on both shared and private clusters, an individual MapReduce user

must perform installation, configuration, and maintenance of the infrastructure they require.

Since MapReduce systems like Hadoop are designed to operate on dedicated machines,

these frameworks implement functionality that may duplicate and conflict with the native

equivalents that are provided on a supercomputer, such as a job scheduler and a custom

distributed filesystem. Most MapReduce frameworks include a job scheduler, but shared

clusters already provide a scheduler such as PBS, and private clusters may not require a

scheduler at all. A redundant or unnecessary job scheduler does not introduce irreconcilable

conflicts but does add complexity in configuration, maintenance, and running jobs. Likewise,

a distributed filesystem is redundant with a supercomputer’s high-availability centralized

storage. Requiring the use of a particular distributed filesystem adds great complexity in

maintenance and may be less robust in this context than the existing storage system. After all,

a distributed filesystem expects nodes to be up all the time, but a supercomputer’s scheduler

kills processes as soon as a job completes. The distributed filesystem may lose all of its data

nodes and all associated data within a few seconds. It is inappropriate for a MapReduce

system on a supercomputer to use a specialized distributed filesystem or scheduler.

A MapReduce system that is well suited to scientific computing on supercomputers

will meet different requirements than a MapReduce system designed for large-scale corporate

42

www.manaraa.com

data processing. Such a system should be easy to install and maintain and should play well

with existing infrastructure. Jobs should be easy to submit to a batch scheduling system.

Programs should require minimal boilerplate to allow for rapid development. Many scientific

programs are dynamic research code rather than stable production software, so the system

should make it easy to develop and debug programs on a single workstation or small cluster

while scaling up to supercomputers.

The Python programming language presents both advantages and challenges in the

context of scientific MapReduce. On the one hand, Python is a full-featured and popular

language that maximizes developer productivity. It has a large scientific community, and it is

popular for developing both prototypes and production code. It has a full-featured standard

library, and most third-party libraries are easy to install in a home directory. Python interfaces

with other languages, such as C, C++, and Java (through Jython). PyPy is an alternative

Python interpreter that provides high performance, especially for numerical programs. On

the other hand, as a highly dynamic language, it does not prioritize performance above all

other concerns. However, with careful attention to the language’s limitations, it is entirely

possible to write an efficient MapReduce implementation in Python.

3.4 The Design and Architecture of Mrs

Mrs is a lightweight MapReduce implementation that works well for scientific computing. It

is designed to be simple for both programmers and users. The API includes reasonable but

overridable defaults in order to avoid any unnecessary complexity. Likewise, Mrs makes it

easy to run jobs without requiring a large amount of configuration. It supports both Python

2 and Python 3 and depends only on the standard library for maximum portability and ease

of installation. Furthermore, Mrs is designed to easily run in a varienty of enviornments and

filesystems. Mrs is also compatible with PyPy, a high-performance Python interpreter with a

JIT compiler that accelerates numerical-intensive programs particularly well.

43

www.manaraa.com

Mrs does not assume any particular job scheduler and is convenient to run in a variety

of different contexts. Starting a job requires merely starting one copy of the program as a

master and any number of other copies of the program as slaves. It does not require any

running daemons, any configuration files, or any particular network ports. When the master

starts, it writes its port to a file (unless a fixed port is specified). A slave needs only the

master’s address and port to connect. Scripts that automate the startup process are available

both for shared clusters such as university supercomputers with many users and for private

clusters with a small number of users. The script for shared clusters submits a job to a PBS

queue (and is easily adapted for any other batch scheduler). The script for private clusters

starts the master and uses pssh (parallel-ssh) to start slaves given a list of hosts. In all cases,

configuration consists only of a short list of command-line options.

3.4.1 Programming Model

As a programming framework, Mrs controls the execution flow and is invoked by a call to

mrs.main. The execution of Mrs depends on the command-line options and the specified

program class. In its simplest form, a program class has an __init__ method which takes

the arguments opts and args from command-line parsing and a run method that takes a job

argument. In practice, most program classes inherit from mrs.MapReduce, which provides a

variety of reasonable but overridable defaults including __init__ and run methods that are

sufficient for many simple programs. The simplest MapReduce program need only implement

a map and a reduce method.

Mrs provides several features to make writing, testing, and debugging MapReduce

programs easier. First, it can run a program in several different execution contexts to help

a programmer track down bugs. Second, it provides a simple mechanism for generating

independent streams of pseudorandom numbers to make it easy to ensure that results

are deterministic and repeatable. Third, it includes a specialized programming model for

high-performance iterative MapReduce algorithms.

44

www.manaraa.com

Mrs defines several different implementations which define the run-time behavior of a

program. The master/slave implementation distributes work across a cluster of processors.

The serial implementation performs all work sequentially on a single processor and makes

all work deterministic. The mock parallel implementation splits work into the same tasks as

would be run in the master/slave implementation but performs all computation on a single

processor. Intermediate data between tasks is saved to files which can be helpful for debugging.

The bypass implementation invokes the program class’s optional bypass method, which is a

simple entry point that avoids almost all of the functionality of Mrs. This implementation

makes it easy to share code between a simple serial implementation of a program and the

corresponding MapReduce implementation. A program’s master/slave, serial, mock parallel,

and bypass implementations should all produce identical answers, Differences in behavior

between any two implementations, even in stochastic algorithms, indicate a bug in the

program or possibly in Mrs.

Mrs provides a mechanism for defining independent streams of pseudorandom numbers.

Nondeterministic results fundamentally make debugging difficult and testing impossible. In

sequential programs, setting a random seed is a simple way to make stochastic algorithms

deterministic. However, in a MapReduce program, setting a fixed random seed at the

beginning of each map or reduce task would make all tasks use the same sequence of random

numbers. The mrs.MapReduce class provides a random method that returns a random number

generator. The method takes a variable number of integer arguments and ensures that the

random number generator is unique for any particular combination of inputs. Because of

the large size of the internal state of the Mersenne Twister, the random method can accept

around 300 arguments that are each 64-bit integers. Mrs makes it easy to generate a unique

random number generator in each task or even to create identical random number generators

in different tasks that need to duplicate specific calculations.

Mrs is optimized for high-performance iterative algorithms. In most MapReduce

systems, there is a significant delay between the end of one iteration and the beginning of the

45

www.manaraa.com

next. Between iterations, a program must retrieve results, check for convergence, and submit

a new MapReduce job, which can involve a considerable amount of overhead. Mrs allows a

program to queue up map and reduce operations so that each is ready to begin as soon as

the previous operation finishes. It can also run operations in parallel if they do not depend

on each other. For example, a convergence check can run in parallel with the computation of

subsequent iterations. The task scheduler in Mrs also attempts to assign corresponding tasks

to the same processor from one iteration to the next, which reduces communication between

nodes and latency between iterations. While outside the scope of this work, Mrs includes

several other optimizations to improve the performance of computationally intensive iterative

algorithms. Support for iterative algorithms allows Mrs to efficiently run iterative algorithms

that would otherwise be inappropriate for MapReduce.

3.4.2 Architecture

Mrs owes much of its efficiency to simple design. Many choices are driven by concerns

such as simplicity and ease of maintainability. For example, Mrs uses XML-RPC because it

is included in the Python standard library even though other protocols are more efficient.

Profiling has helped to identify real bottlenecks and to avoid worrying about hypothetical

ones. We include a few details about the architecture of Mrs.

Communication between the master and a slave occurs over a simple HTTP-based

remote procedure call API using XML-RPC. Intermediate data between slaves uses either

direct communication for high performance or storage on a filesystem for increased fault-

tolerance. Mrs can read and write to any filesystem supported by the Linux kernel or FUSE,

including NFS, Lustre, and the Hadoop Distributed File System (HDFS), and native support

for WebHDFS is in progress. For data stored to a filesystem, the writer opens and writes a

file and then sends the master the corresponding URL, which is used for any future reads.

For data communicated directly, the writer opens and writes a file on a local filesystem, and

requests from readers are served by a built-in HTTP server. Though direct communication

46

www.manaraa.com

writes to a local filesystem, small short-lived files are rarely written to disk. Rather, they

stay in the kernel’s filesystem buffer and are served and removed without ever being flushed.

Python requires a bit more attention to detail than some other languages to properly

manage threads. Within each master and slave, Mrs generally uses processes instead of

threads because of Python’s threading model. The Python language specifies a Global

Interpreter Lock (GIL) that prevents multiple threads in a single process from executing at

the same time. Because of the GIL, Mrs uses threads sparingly, with their use limited to

multiplexed I/O threads. Any threads must be started after all processes have started to

avoid any risk of forking while holding a lock. In general, all child threads are configured

as daemon threads, meaning that they are automatically terminated by Python when the

main thread completes. This ensures that a straggling thread does not prevent the program

from terminating. In each process, the main thread runs an event loop based on poll. Main

threads do not wait on locks for extended periods of time because wait is not generally

interruptible by signals including keyboard interrupts. To avoid such problems and to allow

threads to wait on network communication and other threads at the same time, Mrs makes

heavy use of pipes. Writing a single byte to a pipe wakes up poll in a remote process

or thread and causes it to continue through its event loop. Communication between the

processes of a master or slave uses Python’s multiprocessing module which is also based

on pipes. Complex Python programs like Mrs are much more robust and easily designed by

making greater use of processes and pipes and only sparing use of threads and locks.

3.5 Evaluation

Our objective in creating Mrs was to make MapReduce programming fundamentally more

accessible. We have sought to take full advantage of the features and facilities in Python

to make Mrs both fast and easy to use. In this section we evaluate our results with the

Mrs framework in two ways, first a subjective assessment of programming and running Mrs

and second a quantitative assessment of performance and scalability. In both the subjective

47

www.manaraa.com

evaluation and the performance measurements, we will compare Mrs with Hadoop, which is

currently the most popular MapReduce framework we know of.

3.5.1 Subjective Assessment

In this subsection we seek to assess how effective Mrs is for program development and for

execution. While a software engineering-type comparative study (with multiple groups coding

the same application under control circumstances) is outside of the scope of this paper, we

present here what we feel is compelling subjective evidence that Mrs is an easier environment

the development of MapReduce programs.

The most well known MapReduce example is WordCount, a program which counts

the number of occurrences of each word in a document or set of documents. This example

problem comes from the original MapReduce paper [23]. For this program, the input and

output sets, needed for MapReduce as defined in Section 3.2, are:

K1 : N

V1 : set of all strings

K2 : set of all strings

V2 : N

In WordCount, the input value is a line of text. The input key is ignored but generally

arbitrarily set to be the line number for the input value. The output key is a word, and the

output value is its count.

Program 5 shows the complete Mrs code for the WordCount example. The Mrs

implementation follows trivially from the MapReduce approach to the problem described in

that paper. The “map” part of the implementation splits the input line into individual words

and emits one key-value pair for each word in the input with the word token serving as the

key and a constant string representation of the number 1 as the value. In this application,

48

www.manaraa.com

this is the so-called “embarrassingly parallel” part of the program, separate processes can be

dispatch to emit these key value pairs for each file or even parts of files without concern that

they will conflict with each other.

The MapReduce framework groups all messages with matching keys, via a sort step.

The framework passes the key and a list of all of the values with that key to the reduce part of

the application. The reduce function in the WordCount example, also shown in Algorithm 5,

takes a word (the key) and the list of counts, performs a sum reduction, and emits the result.

This is the only element emitted, so the output of the reduce function is a list of size 1.

Although not critical to an understanding of MapReduce nor this example, the

MapReduce architecture allows for an interesting optimization. If the map tasks emit a

large number of records (as in WordCount), the sort step can take a long time. MapReduce

addresses this potential problem by introducing the concept of a combiner function. If a

combiner is available, the MapReduce system will locally sort the output from several map

calls on the same machine and perform a “local reduce” using the combiner function. This

reduces the amount of data that must be sent over the network for the main sort leading to

the reduce phase. In WordCount, the reduce function can function as a combiner without any

modifications. In our quantitative results included below, we make use of this optimization

in both the Mrs version and the java version.

Program 6 shows the code for the same application but for the Hadoop framework

(without the needed imports, to conserve space) taken from the examples included with

Hadoop.

The same basic structure is discernible. In this case there is a class to hold the needed

map and reduce functions. Java forces exception processing to be more visible than it was in

the Python version. Likewise the marshalling of data is verbose. Some of the complexity of

the main function is driven by the fact that Hadoop makes more of the job structure visible

whereas Mrs finds the needed elements through introspection. Likewise typing in java adds

to the complexity of Hadoop programming. It is certainly the case that Hadoop requires

49

www.manaraa.com

Program 5 WordCount in Mrs/Python

import mrs

class WordCount(mrs.MapReduce):
def map(self, key, value):

for word in value.split():
yield (word, 1)

def reduce(self, key, values):
yield sum(values)

if name == ’ main ’:
mrs.main(WordCount)

users to know much about how the system works. Whereas Mrs really just needs the map

and reduce functions which is the whole point of MapReduce programming.

One might assume that running a Mrs job would be more complex than running

a Hadoop job because Mrs generally relies on external systems for job management and

communications. Fortunately that is not the case. In the shared cluster context running a

Mrs job is quite easy. Program 7 shows the basic elements of a PBS script for running a Mrs

MapReduce program. This script and the corresponding Hadoop script have been reduced

to show just the minimum script elements required to start MapReduce jobs. Full scripts

include additional error handling and output specification. Any environment variables not

defined within the scripts are assumed to be set externally.

The Mrs script (Program 7) has four basic parts: finding the network address of the

master, starting the master, waiting for the master to start, and starting the slaves.

The corresponding Hadoop (program 8) script has more issues to address because

Hadoop was designed to run on dedicated hardware. When trying to simply run as mapReduce

program, there are many elements that have to be setup and later shut down. There are 6

major part of this script. As with the Mrs scripts, first the network address must me found.

Second, the Hadoop configuration must be setup. Note that these files are oriented to the

operations of a dedicated infrastructure, thus in some cases (just one in this case, but it could

50

www.manaraa.com

Program 6 WordCount in Hadoop (imports omitted)

public class WordCount {
public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {

StringTokenizer itr =
new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key,
Iterable<IntWritable> values, Context context
) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new

GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println(”Usage: wordcount <in> <out>”);
System.exit(2);
}
Job job = new Job(conf, ”word count”);
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job,

new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,

new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

51

www.manaraa.com

Program 7 Mrs Startup Script (PBS)

Step 1: Find the network address.
ADDR=$(/sbin/ip −o −4 addr list ”$INTERFACE”
|sed −e ’s;ˆ.∗inet \(.∗\)/.∗$;\1;’)

Step 2: Start the master.
PORT FILE=”$JOBDIR/port”
$PYTHON $MRS PROGRAM −−mrs=Master \
−−mrs−runfile=”$PORT FILE” ${ARGS[@]}

Step 3: Wait for the master to start.
while [[! −e $PORT FILE]]; do sleep 1; done
PORT=$(cat $PORT FILE)

Step 4: Start the slaves.
pbsdsh bash −i −c ”$PYTHON $MRS PROGRAM
−−mrs=Slave −−mrs−master=’$ADDR:$PORT’”

be worse) configuration files must be edited (see the “sed” line), not just moved into place.

Next the daemon processes must be started on the master node (step 3) and so too must the

daemons for the slave nodes (step 4). Now the Master task for the MapReduce can be run

(step 5). Lastly, in step 6, the daemons on both the master and slaves can be stopped. Note

also that since Hadoop requires that data be stored in the Hadoop file system (HDFS) it

must be created and formatted as part of this process, which was included as part of step 3.

Furthermore, any data to be processed by the MapReduce program must be copied into the

HDFS, and likewise data produced, but be copied back out before the HDFS is deleted. The

copying of data in and out of the HDFS is accounted for in step 5. Again, in the context of a

dedicated system, many of these steps are not needed but on a shared cluster, they are.

3.5.2 Performance

In this section we will demonstrate how Mrs performance compares to that of Hadoop using

three example problems of increasing relevance to scientific computing: WordCount, Pi, and

Particle Swarm Function Optimization (PSO). For the first two of these experiments we used

52

www.manaraa.com

Program 8 Hadoop Startup Script (PBS)

Step 1: Find the network address.
ADDR=$(/sbin/ip −o −4 addr list ”$INTERFACE”
|sed −e ’s;ˆ.∗inet \(.∗\)/.∗$;\1;’)

Step 2: Set up the Hadoop configuration.
export HADOOP LOG DIR=$JOBDIR/log
mkdir $HADOOP LOG DIR
export HADOOP CONF DIR=$JOBDIR/conf
cp −R $HADOOP HOME/conf $HADOOP CONF DIR
sed −e ”s/MASTER IP ADDRESS/$ADDR/g”
−e ”s@HADOOP TMP DIR@$JOBDIR/tmp@g” \
−e ”s/MAP TASKS/$MAP TASKS/g” \
−e ”s/REDUCE TASKS/$REDUCE TASKS/g” \
−e ”s/TASKS PER NODE/$TASKS PER NODE/g” \
<$HADOOP HOME/conf/hadoop−site.xml \
>$HADOOP CONF DIR/hadoop−site.xml

Step 3: Start daemons on the master.
HADOOP=”$HADOOP HOME/bin/hadoop”
$HADOOP namenode −format # format the hdfs
$HADOOP HOME/bin/hadoop−daemon.sh start namenode
$HADOOP HOME/bin/hadoop−daemon.sh start jobtracker

our private cluster of 21 machines, each with 6 cores. For the last set of experiments involving

empirical function optimization, we used the Fulton Supercomputing Lab at Brigham Young

University. For all experiments using Hadoop we used the Hadoop file system (HDFS) since

it is required. For the data intensive WordCount application we also used HDFS, but also

tried NFS. The NFS results differ very little (about a second) from those reported. When

using HDFS we dedicated one machine as the HDFS name node, Hadoop job tacker and

Mrs master. We also assumed that the HDFS was already running for both frameworks. For

Hadoop, we ensured that all Hadoop deamons and task trackers were already running. In

this way, we measured the performance of the actual MapReduce programs, and not the

infrastructure supporting the MapReduce frameworks.

Our first example uses the WordCount problem, as this task is common in MapReduce

literature. We use all of the text works from Project Gutenberg, a freely available collection

53

www.manaraa.com

of public domain ebooks (omitting files such as music or Human Genome Project data). Our

full dataset of the works available in pure ASCII format includes 31,173 files, for a total of

roughly two billion unique word tokens. We utilize HDFS to store this data for both Mrs

and Hadoop.

Unfortunately for our comparison, the directory structure from Project Gutenberg is

not very amenable to Hadoop. The input file loader for the Hadoop system expects all of the

files to be located in a single directory, which is not the case with the Project Gutenberg

dataset. With the full dataset, Hadoop struggles to load the data from so many locations,

making the start up time alone take nearly nine minutes. In contrast, Mrs is able to perform

the entire ReduceMap operation, which included loading the data, counting the words, and

aggregating the counts, in under nine minutes. We feel that the directory structure of Project

Gutenberg is representative of real world data and that fundamentally Mrs is more flexible

in terms of loading data. Note that on a smaller subset of the data with only 8,316 files,

Hadoop takes one minute to prepare the data, with a total time of sixteen minutes to finish,

while Mrs finishes the entire MapReduce operation in just two minutes.

While WordCount is a canonical MapReduce example, the PiEstimator example in

Hadoop is more representative of the numeric, computationally intensive problems encountered

in most scientific computation. PiEstimator computes the value of π using a simple Monte

Carlo method. While trivial to implement, this task is computational in nature, with no

data on disk. This method consists of generating a large number of sample points uniformly

distributed on a square with area of 1. An estimation of π / 4 is achieved by multiplying the

ratio of points which fall within unit circle centered at a corner of the square to the total

number of points. Multipling this value by 4 yields the final approximation of π.

PiEstimator generates random numbers using Halton sequences. While these sequences

are entirely deterministic, they are quasi-random. Compared to uniform random numbers,

Halton sequences tend to generate numbers which cover the sample space more evenly, which

can lead to better results in certain types of Monte Carlo simulations. In all languages, the

54

www.manaraa.com

100 101 102 103 104 105 106 107 108 1091010

20

40

60

80

100

120

Points Per Map Task

T
im

e
(s

ec
on

d
s)

Hadoop (Java)

Mrs (PyPy)

Mrs (cPython)

(a) Halton sequence with Mrs using pure Python.

100 101 102 103 104 105 106 107 108 10910101011

20

40

60

80

100

120

Points Per Map Task

T
im

e
(s

ec
on

d
s)

Hadoop (Java)

Mrs (cPython)

(b) Mrs with the inner loop implemented in C.

Figure 3.3: Run times for estimating the value of π. The left hand side of the plots indicates
that Mrs has significantly less overhead than Hadoop. The right hand side shows the
performance of the numerical code, which is exponential due to the log scale. The algorithm
is identical in all cases, so the differences reveal the performance penalty of each programming
language.

implementation of the Halton sequence is optimized to minimize the number of function calls

and the number of comparison operations.

Figure 3.3 shows the results using Hadoop, Mrs with Python, Mrs with PyPy, and

Mrs using ctypes to call a C function. We see two interesting trends. On the left-hand side

of the graph, we see that Mrs significantly outperforms Hadoop, regardless of the choice

of Python interpreter. This can be attributed to the high overhead inherent in using the

Hadoop framework. For this problem, in human terms, it may not matter that the task

completed in two seconds verses thirty seconds However, as we will discuss shortly, many

55

www.manaraa.com

scientific applications are iterative in nature, and this cost in overhead is multiplied by the

number of iterations, making this a strong advantage of the Mrs framework over Hadoop. As

we look to the right hand side of Figure 3.3a, we see that the excellent numeric performance

of Java begins to win out over pure Python. This can be attributed to the static nature

of Java and the high quality of the Java JIT. While not unexpected, this does highlight a

weakness of using pure Python for scientific computing.

However, Python makes it easy to rework existing code so that performance critical

parts of an application, such as the inner loop of our map tasks, can be rewritten in C. For our

second experiment approximating the value of π, we use Python’s ctypes module to call a C

function instead of the the pure Python implementation of the Halton sequence to uniformly

generate random points. In this way we were able to very easily replace the inner loop of our

map task with optimized C code, while leaving the rest of the loop unchanged. Figure 3.3b

shows the results. Once again we see on the left that Mrs has extremely low overhead

compared to Hadoop. However, the C function is much faster than the corresponding Java

function, so Mrs is much faster than Hadoop, despite the vast majority of Mrs code being in

Python.

This experiment does show a key advantage of Python over other languages like

Java—Python is designed to easily interface with other languages. We assert that the speed of

Python will rarely be the true source of performance problems in the Mrs framework. Instead,

thoughtful consideration of algorithms, coupled with profiling and careful optimization will

yield the most improvement. In essence, Python allows us to quickly implement scientific

application code, and then easily convert any critical paths to C. Java on the other hand,

suffers somewhat in this respect.

Our final experiment is an optimization technique used in actual scientific computing.

Particle Swarm Optimization (PSO) is an empirical function optimization algorithm inspired

by simulations of flocking behaviors in birds and insects [15, 39]. The algorithm simulates the

motion of a set of interacting particles within a multidimensional space. At each iteration,

56

www.manaraa.com

0 240180120 30060
10−5

10−2

101

104

107

1010

Minutes

B
es

t
V

a
lu

e

Serial
Parallel

Figure 3.4: Convergence plots of the Apiary topology for the Rosenbrock-250 function with
respect to function evaluations and time.

a particle moves and evaluates the objective function at its new position. A particle is

drawn toward the best value it has seen and the best value that any of its neighbors has

seen. PSO can be naturally expressed as a MapReduce program, with the map function

performing motion simulation and evaluation of the objective function and the reduce function

calculating the neighborhood best by combining the updated particle with messages from its

neighbors [36]. For computationally trivial objective functions, task granularity can be too

fine if each map task operates on a single particle. In this case, a swarm can be divided into

several subswarms or islands, and each map task operates on several iterations of a subswarm

of particles [20, 25, 40].

Using the “Apiary” approach for subswarming [40], Figure 3.4 shows the results for the

well-know Rosenbrock benchmark function in 250 dimensions (“Rosenbrock-250”) with both

serial and parallel computation. Performing 100 iterations on 5 particles requires only 0.2

seconds, and parallel PSO took about 0.5 seconds per iteration. Note that Mrs took advantage

of the the features for iterative MapReduce that we previously mentioned. Furthermore,

this figure includes only the overhead between iterations, and not the start up time for Mrs

(which is about 2 seconds). With any realistically expensive function, the overhead of 0.3

seconds would be negligible.

57

www.manaraa.com

While we did not actually run PSO using Hadoop, we can estimate its performance.

From the execution in Mrs, we know that for the Rosenbrock-250 function PSO took an

average of 2471 iterations to reach the target value of 10−5. From our experiments with

calculating π, we know that Hadoop takes approximately 30 seconds per iteration. Thus

Hadoop would take approximately 2471∗30 seconds or a little longer than 20 hours to achieve

the same convergence. While we realized that this figure is a rough estimate, our experience

with Hadoop suggest that for iterative tasks of this nature, the overhead of Hadoop often

makes it slower than running the same task in serial on a single machine.

3.6 Conclusion

The concept of MapReduce has allowed many users to express their scientific computations

in an easily parallelizable way. However, the complexity of existing MapReduce frameworks

often presents a significant programming burden. Furthermore, most existing MapReduce

frameworks such as Hadoop are optimized for performing high volume data analysis rather

than solve numerically intense problems. We have presented Mrs as a MapReduce framework

which not only eases the programming barrier to entry, but is highly efficient in a scientific

context.

Mrs is particularly well suited to an academic or research environment. Many univer-

sities and research institutions have supercomputer clusters, or private clusters but these are

often generic in nature, not tied to any particular problem or parallel processing technology.

Existing frameworks such as Hadoop which require a dedicated cluster and extensive configu-

ration are not always suitable for researchers. Mrs on the other hand has proven exceptionally

easy to install and use in a wide variety of environments, scheduling systems, and filesystems.

The choice of Python as our implementation language also aids researchers. Python is

a language which naturally lends itself to readable and maintainable code. The syntax is

clear and powerful, allowing users to quickly develop, test and deploy scientific applications.

Furthermore, Mrs itself takes advantage of Python to make writing MapReduce programs

58

www.manaraa.com

easier. As we have demonstrated, Python lends itself to optimization, without sacrificing

code quality by allowing bottleneck portions to be converted to C without affecting any other

Python code.

Furthermore, the performance characteristics of Mrs are tailored for scientific com-

puting, where overhead can be more of a significant issue. In particular, the low overhead

of Mrs has improved our ability to tackle iterative evaluations such as empirical function

optimization. While it was beyond the scope of this paper, future work on Mrs will include

additional features which will further improve iterative MapReduce. We have developed a

model for iterative MapReduce which allows for efficient implementation. In addition, we

have developed novel operations, which lower overhead by significantly reduce the need for

communication compared to traditional MapReduce systems.

59

www.manaraa.com

Chapter 4

High Performance MapReduce for Iterative and Asynchronous Algorithms

This chapter challenges assumptions embodied in most MapReduce systems that

limit performance for iterative algorithms. The proposed changes to the MapReduce model

and implementations dramatically improve performance for iterative programs and make

MapReduce an ideal platform for optimization research.

Abstract

The MapReduce model is designed for large-scale data processing, but its benefits, such as

fault tolerance and automatic message routing, are also helpful for computationally-intensive

iterative algorithms. Unfortunately, these algorithms perform poorly when implemented in

typical MapReduce implementations such as Hadoop.

We propose four modifications to MapReduce to improve performance for iterative

programs: First, we combine direct task-to-task communication with strategic use of a

distributed filesystems to improve performance while preserving fault tolerance. Second, we

combine the reduce and map tasks which span successive iterations to eliminate unnecessary

communication and scheduling latency. Third, we propose a generator-callback programming

model to allow for greater flexibility in the scheduling of tasks. This allows operations typically

found in iterative programs, such as convergence checking and output to be scheduled less

frequently and outside of the regular MapReduce cycles. Finally, some iterative algorithms

are naturally expressed in terms of asynchronous message passing, and we propose a fully

asynchronous variant of MapReduce.

60

www.manaraa.com

We show that these enhancements yield significant performance improvements in the

context of two iterative applications: particle swarm optimization (PSO) and expectation

maximization. For example, the combined reduce-map operation alone improves performance

from 0.79 to 0.55 seconds (30.7%) per iteration for PSO. Asynchronous MapReduce—even

with nearly uniform task times—provides a further improvement of 32% on 768 processors.

4.1 Introduction

Iterative programs exhibit poor performance in most MapReduce [23] frameworks, yet

MapReduce remains popular for such applications. It has been used for iterative algorithms

such as k-means [16], logistic regression [17], backpropagation [17], independent component

analysis [17], expectation maximization (EM) [17], support vector machines [17], genetic

algorithms [18], and particle swarm optimization (PSO) [36]. The popularity of MapReduce

may be attributed to its simplicity and availability. Unfortunately, such convenience comes

with a significant performance penalty [16–18, 36, 38, 41].

Iterative programs are more sensitive to per-iteration overhead than single-pass data

processing algorithms are. While a thirty second overhead to start up a MapReduce job may

be insignificant in a web indexing program, it adds hours to the execution time of a program

that runs for thousands of iterations. If the parallel part of the work requires tenths of

seconds and the per-iteration overhead is tens of seconds, then the overhead is two orders of

magnitude larger than the work to be done. Several specific problems limit the performance of

iterative programs in traditional MapReduce frameworks. First, most MapReduce frameworks

write all intermediate data to fault-tolerant distributed filesystems, which is slow, or never

write to reliable storage, which sacrifices fault tolerance. Second, separate reduce and map

tasks between the end of one iteration and the beginning of the next require unnecessary

communication and scheduling latency. Third, submitting operations one at a time adds

a delay between iterations and precludes the runtime system from performing operations

concurrently. Specifying a sequence of operations including computations like convergence

61

www.manaraa.com

checks is unnatural and inefficient. Finally, some iterative algorithms are expressed in terms

of asynchronous message passing, but MapReduce requires synchronous communication.

Algorithms such as asynchronous parallel PSO [26, 27] are not expressible in the standard

MapReduce programming model.

We contribute techniques for improving the performance of iterative MapReduce

programs and an extension to the programming model to support asynchronous algorithms.

Three specific improvements for synchronous programs, discussed in Section 4.3, are applicable

to any MapReduce implementation. First, we argue for only occasionally checkpointing

to reliable storage while using direct communication between nodes for most iterations

(Section 4.3.1). Second, we propose that a reduce tasks be agglomerated with the subsequent

map task with the same key, which reduces communication and halves the number of tasks

that must be assigned each iteration (Section 4.3.2). Third, we present a generator-callback

model for submitting operations for concurrent and asynchronous evaluation (Section 4.3.3).

This model makes it easy for iterative algorithms to submit intermittent operations, such as

convergence checks, to be evaluated concurrently without requiring significant bookkeeping.

Finally, we introduce an asynchronous extension of the MapReduce programming model in

Section 4.4 which efficiently supports algorithms such as PSO where iteration can proceed at

a different rate for each key. This model allows the same straightforward map and reduce

functions to work in both synchronous and asynchronous operation.

Although our objective is to motivate, describe, and advocate the widespread use

of these approaches, we also demonstrate them in the context of the Mrs [35] MapReduce

framework. Section 4.5 evaluates the performance of Mrs with and without these features,

using PSO [36] and EM [17] as examples, and shows significant improvements in performance.

Compared to standard MapReduce, using a reduce-map operation improved PSO performance

by 31%. For EM, iterations without checkpointing to redundant storage show a 91%

improvement, making parallelization feasible, and the reduce-map operation gives an extra

11%. Asynchronous MapReduce improves performance of PSO by an additional 24% in the

62

www.manaraa.com

presence of moderate variability in task execution times for a total gain of 53%. Furthermore,

it performs iterations faster than synchronous PSO even when task execution times are

uniform. With 768 processors and uniform tasks, Asynchronous MapReduce increases the

throughput by 47%.

4.2 Related Work

The MapReduce [23] parallel programming model was originally intended for large scale data

processing. Hadoop is the most well known and widely used open source implementation of

MapReduce. A variety of frameworks based on or related to MapReduce are designed for

computationally intensive and iterative programs. Some improvements make the programming

model more powerful or convenient, while others improve performance, either through

communication or scheduling.

MapReduce is technically defined as a map phase followed by a reduce phase, and this

model must be extended, at least trivially, to support iterative programs. In most MapReduce

systems, a “user program” or “driver” submits a job consisting of a map phase and a reduce

phase, waits for it to complete, reads the results, and then repeats. Several MapReduce-like

systems allow the user to specify an arbitrary directed acyclic graph of data dependencies [41–

43]. This flexible approach has not yet caught on in MapReduce systems, with the exception

of FlumeJava [44], which includes an optimizer to automatically combine arbitrary primitive

operations into a smaller number of “MapShuffleCombineReduce” operations. Twister [38]

introduces a “combine” phase for collecting the results of a reduce operation at the end of

each iteration, but the combine phase, along with the associated delay before submitting

the job for the next iteration, adds to the per-iteration overhead. HaLoop [37] introduces a

model for specifying a list of map and reduce functions to be executed each iteration but does

not allow an arbitrary directed acyclic graph of data dependencies or an arbitrary stopping

criterion.

63

www.manaraa.com

Some MapReduce implementations improve performance by reducing the cost of

communication between nodes, which can be significant in iterative programs. Google’s

MapReduce implementation [23] and Hadoop both use distributed filesystems (GFS [45] and

HDFS [46], respectively) for communication between nodes, but this style of communication

presents significant per-iteration overhead. Spark [41] and HaLoop [37] pay the cost of writing

to a distributed filesystem but try to avoid the cost of reading by caching values in RAM and

scheduling tasks accordingly. Twister [38] pushes intermediate data directly from map tasks

to reduce tasks and stores data on the master between reduce and map tasks. This enables

rollbacks to the previous iteration in the case of failure, but it requires all intermediate data

between a reduce task and the subsequent map task to be stored on the master. Furthermore,

the approach requires sufficient RAM on each processor to store input to pending reduce

tasks.

Some MapReduce implementations make the scheduler more efficient. One simple

and effective optimization is to schedule each task to the node which contains its input data.

Twister [38] uses static scheduling to preserve locality, but dynamic locality-aware scheduling

of each task to a processor which holds its input is more flexible but still simple [37]. Locality-

aware dynamic scheduling even scales to multi-user environments [47]. Preserving locality

reduces unnecessary communication between processors and can even allow intermediate

data to be cached in RAM in unserialized form [41]. Scheduling is extended by iHadoop [48],

which allows the convergence check of HaLoop to run concurrently with the next iteration and

allows the output of a reduce task to stream to the subsequent map task. In iMapReduce [49],

map and reduce tasks are scheduled statically to reduce communication and eliminate the

overhead of starting new tasks. In both iHadoop and iMapReduce, a map task may be

scheduled “asynchronously,” before other reduce tasks have completed.

We build on and extend those observations made in related work. A directed acyclic

graph of data dependencies adds great flexibility [41–44]. Direct communication is faster

than communicating through a distributed filesystem [38]. Scheduling tasks to the processors

64

www.manaraa.com

which already store the input data reduces communication [37]. The data produced by each

reduce task is communicated to a single map task [48, 49]. In many problems, the key in

map and reduce tasks refers to a persistent object from iteration to iteration [49]. In addition

to these observations from related work, we observe that in the case of persistence, some

algorithms may perform more iterations for some keys than for others. We distinguish the

novel Asynchronous MapReduce programming model, where iterations do not proceed in

lockstep, from asynchronous scheduling [48, 49] which is well known.

4.3 Synchronous MapReduce

Most improvements to frameworks for synchronous MapReduce programs either reduce

communication costs or improve scheduling. Iterative programs are sensitive to overhead such

as communication costs because such overhead accumulates from iteration to iteration. We

propose three improvements to reduce overhead. Section 4.3.1 shows a principled approach

for limiting the frequency of checkpoints to distributed storage. Section 4.3.2 describes

a reduce-map operation for agglomerating reduce and map tasks. Section 4.3.3 defines a

generator-callback model for defining a directed acyclic graph of operations in an iterative

program. These three improvements are evaluated later in the paper in Section 4.5.

4.3.1 Infrequent Checkpointing to Distributed Filesystems

Traditional MapReduce implementations communicate all intermediate data through a

distributed filesystem. Such filesystems replicate all data to ensure fault tolerance but come

with a significant performance penalty. Communication and storage in MapReduce should

explicitly address the tradeoff of speed vs. capacity and fault tolerance. An ideal runtime

would be able to automatically move data between levels of the memory hierarchy, a well-

known strategy for storage devices [50]. While an advanced automatic memory hierarchy

may be impractically complex for a MapReduce system, communicating data from some

65

www.manaraa.com

iterations directly between nodes and storing data from other iterations to reliable storage is

a simple way to balance speed and fault tolerance.

We advocate storing the output of most map and reduce tasks on the local filesystem,

while storing the output from occasional checkpoint iterations to reliable storage. The

operating system buffers data on the filesystem in RAM and automatically migrates it to

disk if necessary. With fast iterations, short-lived intermediate data is usually deleted before

ever being written to disk. This approach provides the speed of RAM when possible and

gracefully sacrifices speed for capacity when the size of data is great. In the event that a

node fails and makes its local storage unavailable, a MapReduce runtime can roll back to the

most recent checkpoint iteration.

In almost any realistic iterative program, checkpointing should occur far less than every

iteration, unlike most MapReduce systems, including Hadoop. Some other implementations,

like Twister [38], go to the other extreme and do not support distributed storage, sacrificing

fault tolerance. The ideal checkpointing frequency depends on the expected cost of failures vs.

the cost of redundancy. We estimate and compare these costs using a simple model. While

specific circumstances may warrant a customized model to determine the ideal checkpoint

frequency, this simple model gives a rule of thumb and demonstrates the cost of checkpointing

every iteration.

In this simple model, failures are assumed to be independent. We also assume that

the times required to compute an iteration, perform a checkpoint, or initiate a recovery are

constant. Let n be the number of iterations between checkpoints, t the time to perform each

iteration, c the extra time required for a checkpointed iteration, and r the time to initiate

recovery after a failure. Let X be a Bernoulli-distributed random variable indicating whether

a failure occurs during an iteration, with probability determined by the product of the mean

time between failures in a cluster f and the total time per iteration (including the amortized

cost of checkpointing):

X ∼ Bernoulli

(
1

f

(
t+

c

n

))

66

www.manaraa.com

Let Y ∼Uniform(n) be a random variable indicating the number of iterations since the last

checkpoint, which is independent of X. Then the expected value of the number of seconds of

extra work in an iteration is:

E [X (r + Y t)] =
1

f

(
t+

c

n

)(
r +

n

2
t
)

If this is less than the amortized cost of checkpointing per iteration (c
n
), then redundancy

costs more than it helps. The breakeven point is given by solving for n:

n = max

[
1,

1

t

(√(c
2

+ r
)2

− 2c(r − f)−
(c

2
+ r
))]

Most reasonable values cause n to be larger than 1. Suppose that writing to reliable

storage adds 10 seconds per iteration (c = 10) and that initiating recovery from a checkpoint

requires 60 seconds (r = 60). Note that the values for c and r are conservative, and increasing

c or decreasing r would increase n. For a program with moderately slow one-minute iterations

(t = 60) and frequent failures on average once every three hours (f = 10800), the breakeven

point n is 6.7. For a program with fast iterations (t = 1) and a moderate failure rate of one

failure in a cluster per week (f = 604800), the breakeven point n rises to 3413. The ideal

frequency of checkpointing depends on individual circumstances, and many short-running

programs may not require checkpointing at all.

4.3.2 Reduce-map Operation

Iterative MapReduce programs consist of a string of iterations, each with a map operation

and a reduce operation. The new task dependencies between iterations motivate rethinking

the decomposition of work into tasks. The output from each reduce task is the sole input to

a single map task in the next iteration. Some systems take advantage of this relationship

between tasks by scheduling them to the same processor or starting a map task before all

preceding reduce tasks are complete [48, 49]. We instead agglomerate each reduce task with

67

www.manaraa.com

input

input

input

input

M

M

M

M

R

R

R

R

M

M

M

M

R

R

R

R

M

M

M

M

(a)

input

input

input

input

M

M

M

M

RM

RM

RM

RM

RM

RM

RM

RM

(b)

Figure 4.1: Task dependencies of a typical iterative MapReduce program with (a) stan-
dard map (M) and reduce (R) operations, contrasted with (b) combined reduce-map (RM)
operations.

the map task that uses its output, which removes this communication and halves the number

of tasks that the master must assign each iteration. Figure 4.1 shows the dependencies between

tasks with separate reduce and map tasks (Figure 4.1a) and with combined reduce-map tasks

(Figure 4.1b).

In principle, the master might be able to autodetect these fine-grained data dependen-

cies, but we allow the user to either specify a reduce-map dataset or separate reduce and

map datasets. The user still provides a map function and a reduce function, but specifying a

reduce-map operation allows the runtime to combine tasks and eliminate communication.

Figure 4.2 demonstrates the difference between MapReduce using separate reduce

and map operations and MapReduce using combined reduce-map operations. Combining the

reduce and map eliminates the time spent in assigning each reduce task and waiting for it to

complete.

68

www.manaraa.com

0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

t
0 0.5 1 1.5

(a) standard reduce and map operations

3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

t
0 0.5 1 1.5

(b) combined reduce-map operations

Figure 4.2: Actual task execution traces generated from a sample application (particle swarm
optimization, see Section 4.5.1.1 for details) without and with combined reduce-map tasks.
The run with reduce-map operations avoids the overhead of an independent reduce task and
completes sooner. The horizontal axis is measured in seconds, with the left and right sides of
each box aligning with the task’s start and stop times. The number in each box is the key of
the map task.

4.3.3 Iterative Programming Model

The standard MapReduce model defines a single map phase followed by a single reduce

phase [23], but iterative programs execute an arbitrary number of operations and often need

to compute a loop termination condition that depends on the results. Computing convergence

checks infrequently and concurrently with subsequent iterations improves performance, but

most MapReduce implementations do not provide any mechanism to specify this behavior.

We propose an alternative model for defining operations that allows programs to specify

complex behavior without becoming inherently complicated. This model is available for

69

www.manaraa.com

iterative programs that require such behavior but is not required for traditional single-iteration

MapReduce programs.

Varying the operations that are performed each iteration—for example, only performing

convergence checks or printing intermediate output occasionally—can significantly improve

performance. Suppose a program runs in one second per iteration and that evaluating the

loop termination condition requires a tenth of a second. If this loop condition computation

is performed every iteration, it adds about 6 minutes over the course of an hour. Reducing

the check to once per minute extends execution by an average of 30 iterations but still saves

about 5 minutes total.

We represent parallel computation with a directed acyclic graph of datasets. A dataset

represents data to be produced along with the associated operations required to produce

it. In the representation of computation as directed acyclic graph, the edges are the work,

and the vertices are the data. Such datasets are similar in spirit to resilient distributed

datasets [41]. When a user program submits datasets for asynchronous evaluation, the

runtime performs computations in any order consistent with the dependency graph. Unlike

the lazily evaluated tasks in Ciel [43], these datasets are evaluated eagerly. Because the next

iteration can begin before evaluation of the loop condition completes, both operations can

be performed concurrently. Likewise, the runtime can begin work on subsequent iterations

while a user program is collecting and printing intermediate results. Unfortunately, manually

managing a backlog of submitted datasets is tedious and error-prone, particularly if the work

varies between iterations.

We propose a generator-callback model for submitting an arbitrary directed acyclic

graph of asynchronously evaluated datasets and for handling their completion. The generator-

callback model requires the program to provide a generator method. The generator method

serves as an iterator or coroutine that produces work to be done. It submits each dataset

for computation, along with an optional callback function to be called when computation

completes. The master keeps a backlog of pending datasets, and if the backlog gets full,

70

www.manaraa.com

the generator blocks when it submits a dataset, later resuming when the backlog shrinks.

Implementation is especially straightforward in languages which natively support coroutines,

such as Python, C#, Go, and Javascript. As each dataset completes, the master calls the

associated callback method, which can optionally read and process the results in parallel

with subsequent MapReduce iterations. Termination is triggered either by the backlog

exhausting after the generator completes or by a callback function returning False to indicate

that the loop termination condition has been met. This model allows the MapReduce

system itself to manage the backlog of datasets rather than exposing the details to the user.

Manually maintaining a backlog requires bookkeeping that runs contrary to the simplicity of

MapReduce.

Programs using the generator-callback model have greater flexibility and performance.

This model is optional but may provide significant benefits for iterative programs that use it.

Program 9 is a program which submits one MapReduce step at a time. Unfortunately, the

structure of this program forces computation to wait while the master blocks on pending

operations, performs the convergence check, and outputs intermediate results. Program 10

uses a generator-callback API to gain flexibility and performance. Note that in this example,

an operation is submitted in the form of a declaration of the dataset it is to produce, not

the operation itself. The generator function submits several iterations in advance, pausing

only when the submit call (or the yield statement if implemented in a language with native

support for iterators or coroutines) blocks. This allows tasks to be assigned with lower

latency. The generator function also runs convergence checks with limited frequency to reduce

overhead. These convergence checks are performed concurrently with subsequent iterations

and could be submitted as datasets if they represent significant computation. The simple

generator-callback structure makes it easy to specify computation that varies from iteration

to iteration and to read data asynchronously as computation completes. Both the blocking

program and the generator-callback program use the same simple map and reduce functions.

71

www.manaraa.com

Program 9 The structure of a generic iterative program using a standard iterative-unaware
MapReduce API.

run batches():
Intialize key value pairs with empty data.
init file = makeTempPath()
for element id = 1 to NUM ELEMENTS

init file.writePair(element id, ””)

Perform mapreduce to obtain initial data.
job = new job()
job.setInput(init file)
job.setMapper(init map func)
job.setReducer(identity reduce func)
data path = makeTempPath()
job.setOutput(data path)
job.waitForCompletion()
last data = data path

Perform mapreduce iteratively.
for iteration = 1 to MAX ITERATIONS

Run a mapreduce iteration and wait for a dataset.
job = new job()
job.setInput(last data)
job.setMapper(map func)
job.setReducer(reduce func)
data path = makeTempPath()
job.setOutput(data path)
job.waitForCompletion()
last data = data path

Occasionally output and run convergence check.
if iteration % CHECK FREQUENCY = 0

Iteration stalls until this completes in serial.
data = readAllFiles(data path)
perform output(data)
if converged(data)

break

72

www.manaraa.com

Program 10 The structure of a generic iterative program using a generator-callback Map-
Reduce API for performance and flexibility.

generator(queue):
Intialize key value pairs with empty data.
kv pairs = empty list
for element id = 1 to NUM ELEMENTS

kv pairs.append(element id, ””)

Submit request to initialize curr data.
curr data = MapDataset(kv pairs, init map func)
queue.submit(curr data, NULL)

for iteration = 1 to MAX ITERATIONS
Submit asynchronous request to map iterm data.
interm data = MapDataset(curr data, map func)
queue.submit(interm data, NULL)

Submit asynchronous request to reduce curr data.
curr data = ReduceDataset(interm data,

reduce func)

Occasionally submit output or convergence check.
if iteration % CHECK FREQUENCY = 0

Iterations continue in parallel with callback.
queue.submit(curr data, output callback)

else
queue.submit(curr data, NULL)

output callback(data):
data.readAllFiles()
perform output(data)

Continue processing if not converged.
return !converged(data)

73

www.manaraa.com

4.4 Asynchronous MapReduce Programming Model

Iterative MapReduce can serve as a simple message passing framework. A map task serves

to update an object, emit it, and emit messages to other objects. Between map tasks

and reduce tasks is an implicit barrier for communication to complete, and a reduce task

aggregates messages and emits the object, updated with information from the messages. With

a reduce-map operation, the second implicit barrier, between the reduce and the following

map, is removed. In the context of message passing algorithms, the MapReduce framework

conceptually manages all communication, leaving map and reduce functions focused on the

essence of the algorithm.

Not all iterative message passing algorithms require a barrier between each map

operation and the following reduce. Such algorithms take advantage of all of the messages

that have been received so far, and consideration of late-arriving messages is delayed to the next

iteration. This class of algorithms is not expressible in the standard MapReduce programming

model. Figure 4.3 illustrates task dependencies in an iterative program with heterogeneous

task execution times. In synchronous MapReduce (Figure 4.3a), the barrier betweeen

iterations leaves the faster processors idle, but in asynchronous MapReduce (Figure 4.3b),

the faster processors evaluate more iterations. The benefit can be similar on homogeneous

processors if the map and reduce execution times vary or if there are a large number of

processors.

We extend the MapReduce programming model to allow asynchronous message passing

algorithms. In Asynchronous MapReduce, the programmer may specify that computation of

a dataset may begin before all of the tasks in its parent have completed. Unfinished tasks

continue execution, and upon completion, their results are added to a subsequent dataset

specified by the programmer. The runtime framework keeps track of messages sent to keys

with uncompleted tasks and ensures that they do not get lost. These pending messages are

included in the same dataset as the results of the task when it eventually finishes. This simple

model assumes only that a key refers to a specific object that remains fixed in each iteration.

74

www.manaraa.com

RM RM RM

RM RM RM

RM RM RM

RM RM RM

RM RM RM

(a) synchronous

RM RM RM RM RM

RM RM RM

RM RM RM RM

RM RM RM RM RM

RM RM RM RM

(b) asynchronous

Figure 4.3: Task dependencies for reduce-map tasks in synchronous and asynchronous iterative
MapReduce. Asynchronous MapReduce makes much more efficient use of processors.

It works for programs that require multiple map and reduce phases in each iteration, and it

is compatible with optimizations like the reduce-map operation.

Adapting a message passing MapReduce program to the asynchronous model requires

the programmer to be aware of three new parameters to datasets:

• async_start

• blocking_ratio,

• backlink.

The async_start parameter is a boolean indicating whether a dataset can start asyn-

chronously while some tasks in its input are still running. The blocking_ratio parameter

determines the minimum fraction of tasks that must be completed before any child dataset

can start asynchronously and defaults to 1 (fully synchronous). The backlink parameter

75

www.manaraa.com

specifies an earlier dataset from which uncompleted tasks are inherited. New tasks are only

started for those keys whose corresponding tasks in the backlink dataset were completed

before any asynchronous execution of its children began.

Although implementation of this model in the runtime framework is not quite trivial,

its effect on the map and reduce functions is minimal. The semantics of the map function is

unchanged. It still updates an object, emits it, and emits messages. The reduce function,

however, is no longer guaranteed to be given the object at every iteration. It might receive

only messages intended for the object. In iterations where the reduce function does not receive

the object, it can combine messages together, but these messages cannot be incorporated

into the object yet. Note that a program that works with Asynchronous MapReduce can also

run in traditional synchronous mode.

Particle swarm optimization (PSO), described in more detail in Section 4.5.1.1, is

an example of a simple iterative message passing algorithm that is naturally expressed in

MapReduce [36]. The map function updates the position of a particle, emits the updated

particle, and emits messages to neighboring particles. The reduce function aggregates the

messages from neighboring particles, and emits the particle with updated information about

its neighbors. Asynchronous parallel PSO is a variant of PSO which allows the evaluation of

a particle to proceed even if messages have not been received from all of its neighbors [26, 27].

The fully distributed variant of asynchronous parallel PSO makes its message passing nature

particularly clear [51].

Adapting a MapReduce implementation of parallel PSO to the asynchronous model

requires very few changes. The reduce function must be tolerant of input that includes several

messages but no complete particle; in this case it simply emits the best message. Assuming

that this case is correctly handled, the map and reduce functions are identical to those in

the synchronous MapReduce PSO implementation. The driver must be updated only to

include the asynchronous MapReduce parameters. The map dataset at each iteration must be

specified with a blocking_ratio below 1 and with a backlink pointing at the map dataset

76

www.manaraa.com

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

t
0 0.5 1 1.5

(a) synchronous

4 4 4 4 4 4 4 4

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

t
0 0.5 1

(b) synchronous

Figure 4.4: Actual task execution traces for PSO with synchronous and Asynchronous
MapReduce. The horizontal axis is measured in seconds.

from the previous iteration. The reduce dataset at each iteration must be specified with the

async_start parameter set to true. In the case that a single reduce-map dataset is used, it

must be given all of these options.

Figure 4.4 shows the improved efficiency of Asynchronous MapReduce compared to

synchronous MapReduce for tasks with variable execution times. In synchronous MapReduce,

all tasks in an iteration start at the same time, which is limited by the end time of the slowest

task in the previous iteration. In Asynchronous MapReduce, each task can start as soon

as the corresponding task from the previous iteration completes. Also note that the time

between tasks is slightly less in asynchronous MapReduce, presumably due to the load on

the master and the traffic on the network being less bursty.

77

www.manaraa.com

4.5 Experimental Results

Although the approaches described in this paper are applicable to any MapReduce implemen-

tation, we evaluate their effects using the Mrs [35] framework. Experiments are performed

on two clusters: a 2560-core cluster of 320 nodes, each with two quad-core 2.8 GHz Intel

Nehalem processors and 24 GB of memory, and a 150-core cluster of 25 nodes, each with a

6-core 3.2 GHz AMD Phenom II X6 1090T processor with 16 GB of RAM, We run Mrs with

and without various techniques enabled, compare the average time per iteration, and measure

the average parallel efficiency per iteration. Parallel efficiency is the speedup per processor,

relative to the fastest serial algorithm [32], for which we use typical serial implementations.

4.5.1 Synchronous MapReduce

In addition to the serial baseline, we compare with a baseline parallel configuration. This

configuration uses redundant storage and convergence checks in serial every iteration, as is

common in most MapReduce frameworks, but it also performs some optimizations, such as

locality-aware scheduling, which are unavailable in some frameworks.

Although most users will wish to use redundant storage and perform convergence

checks, these do not need to be run every iteration. Even if the occasional iteration cannot

take advantage of the improved performance, the majority of iterations are accelerated.

Section 4.5.1.1 describes particle swarm optimization (PSO) and shows the parallel efficiency

of parallel PSO in MapReduce with the cumulative effects of direct communication, con-

current convergence checks, disabled convergence checks, and combined reduce-map tasks.

Section 4.5.1.2 describes the EM algorithm and shows similar cumulative improvements.

4.5.1.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an empirical function optimization algorithm inspired

by simulations of flocking behaviors in birds and insects [15, 39]. The algorithm simulates the

motion of a set of interacting particles within a multidimensional space. At each iteration,

78

www.manaraa.com

a particle moves and evaluates the objective function at its new position. A particle is

drawn toward the best value it has seen and the best value that any of its neighbors has

seen. PSO can be naturally expressed as a MapReduce program, with the map function

performing motion simulation and evaluation of the objective function and the reduce function

calculating the neighborhood best by combining the updated particle with messages from its

neighbors [36]. For computationally inexpensive objective functions, task granularity is too

fine if each map task operates on a single particle. In this case, a swarm can be divided into

several subswarms or islands, and each map task operates on several iterations of a subswarm

of particles [20, 25].

Program 11 is an implementation of PSO using a generator-callback API as in

Program 10 from Section 4.3.3. This is a fully-functional program in Mrs, but it would be

very similar in any MapReduce runtime system were it adapted to use a generator-callback

API.

We find significant performance improvements for PSO in MapReduce. We use PSO

with subswarms of 5 particles applied to the 250 dimensional Rosenbrock function [52]. Each

subswarm runs for 50 “subiterations” in each map task. A baseline serial implementation

of PSO takes an average of 0.26 seconds to simulate 5 particles for 50 iterations. Note

that unlike the parallel implementation, this serial baseline does not serialize the state of

particles between iterations. Combining reduce and map operations into a single reduce-map

operation significantly reduces the overhead of assigning tasks. With separate reduce and

map operations, the average time per iteration is 0.79 seconds. With a combined reduce-map

operation, the average time per iteration drops to 0.55 seconds. This represents a reduction

of 30.7% in each iteration.

Even a most inefficient MapReduce implementation would be able to provide reasonable

parallel efficiency for a large enough problem size, but features that take into account the

nature of iterative algorithms are able to extend the range of reasonable performance to more

modestly sized problems. Figure 4.5 demonstrates the benefits of several techniques with

79

www.manaraa.com

Program 11 PSO program using a generator-callback MapReduce API.

def run(self, job):
job.default reduce tasks = NUM PARTICLES
job.default reduce splits = NUM PARTICLES
self.check datasets = set()
IterativeMR.run(self, job)

def producer(self, job, iteration):
if iteration == 0:

kvpairs = []
for i in range(NUM PARTICLES):

kvpairs.append(i, ’’)
start data = job.local data(kvpairs)
self.swarm data = job.map data(start data,

self.init map)
start data.close()

elif iteration <= MAX ITERS:
tmp data = job.map data(self.swarm data,

self.pso map)
self.swarm data.close()
self.swarm data = job.reduce data(tmp data,

self.pso reduce)
tmp data.close()
if iteration % CHECK FREQ == 0:

tmp data = job.map data(self.swarm data,
self.collapse map, splits=1)

check data = job.reduce data(tmp data,
self.findbest reduce, splits=1)

self.check datasets.add(check data)
else:

return []

def consumer(self, dataset):
if dataset in self.check datasets:

self.check datasets.remove(dataset)
dataset.fetchall()
self.output(dataset.data())
if self.converged(dataset.data()):

return False
return True

80

www.manaraa.com

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Number of subiterations

P
ar

al
le

l
E

ffi
ci

en
cy

Reduce-map tasks
Rare checks
Concurrent checks
No redundant storage
Redundant storage

Figure 4.5: Parallel Efficiency (per iteration) of PSO in MapReduce with a sequence of
cumulative optimizations. The x-axis represents the problem size (the number of subiterations
in each map task). “Redundant storage” represents the baseline performance, with all data
stored to a redundant filesystem and with convergence checks occurring after each iteration.
“No redundant storage” shows performance for iterations with data communicated directly
between processors. “Concurrent checks” shows further improvements when the convergence
check is performed alongside the following iteration’s work. “Rare checks” avoids unnecessarily
frequent convergence checks. Finally, “reduce-map tasks” agglomerates each pair of reduce
and map tasks into a single reduce-map task.

respect to the problem size, which in the case of PSO is the number of subiterations performed

by each subswarm within each map task. Note that the improvements are cumulative and

optional. Though the figure only shows the performance of a reduce-map task in conjunction

with direct communication, a configuration using redundant storage would still benefit from

using combined reduce-map tasks. Furthermore, a program need not be equally efficient in

each iteration. For example, even if redundant storage and convergence checks are performed

occasionally, the majority of iterations can benefit from these optimizations. In MapReduce

implementations that make redundant storage optional, a program only pays for the level of

redundancy it needs.

4.5.1.2 Expectation Maximization

Expectation Maximization (EM) is an iterative algorithm commonly used to optimize param-

eters of finite mixture models in order to maximize the likelihood of the observed data [53].

81

www.manaraa.com

Specifically, we apply the algorithm to a mixture of multinomials model in the context of

clustering text documents [54, 55]. For each multinomial component in the model, we must

maintain vectors with the same dimensionality as the number of features, which can be large.

This greatly increases the communication cost when running in parallel, making efficiency

difficult to obtain. Other mixture models, such as mixture of Gaussians, have much smaller

parameter sizes, and have been parallelized successfully with the EM algorithm [56, 57]. We

choose this particular model because it is inherently difficult to parallelize. With redundant

storage and convergence checks at every iteration, performance was abysmal. However, with

the suggested improvements give much better parallel efficiency.

A single iteration of the EM algorithm consists of two steps. For our model, the

expectation step (E-step) uses the current state of the parameters to estimate partial label

assignments for the data. This is followed by the maximization step (M-step), which re-

estimates the parameters using those partial label assignments. This algorithm is guaranteed

to never decrease the log-likelihood of the data and will always converge to a local maximum.

EM for mixture of multinomials can be expressed as a two-stage iterative MapReduce

program. The first stage of the program performs the E-step. Each map processes a shard

of the documents and computes a posterior distribution given the current state parameters.

The reduce then combines the posterior into partial counts for each of the labels. The second

stage of the program re-estimates the parameters of the model. The map task performs

normalization for each of the labels, and then the reduce tasks combine the normalized counts

to produce the updated model parameters.

We tested the MapReduce implementation of EM with the 20 newsgroups dataset,

a common benchmark for document clustering [58]. After preprocessing, the dataset had a

vocabulary size of approximately 80,000 unique words. As a final step, we applied random

feature hashing, which maps each unique word to a predefined number of bins. Although

simple, this type of feature selection has been show to perform surprisingly well [59, 60], but

82

www.manaraa.com

Table 4.1: Parallel efficiency per iteration of EM for various feature set sizes. As expected,
higher feature set sizes lead to lower parallel efficiency, but removing redundant storage
significantly helps. Further gains are realized by reducing convergence checks and using the
reduce-map operation.

Optimization 80 252 8000 25298
Reduce-map tasks 0.411 0.357 0.277 0.193
Rare checks 0.362 0.314 0.253 0.18
Redundant storage 0.013 0.013 0.013 0.012

other more principled dimensionality reductions such as latent Dirichlet allocation [61] could

also be used to reduce the feature set size.

Table 4.1 shows the efficiency of parallel EM for various reasonable feature set sizes.

Note that as the feature set increases in size, the amount of communication increases at a

faster rate than the amount of computation which must be performed for each task, which

decreases parallel efficiency. In fact, if one were to do no feature engineering whatsoever and

use all 80,000 words as features, the cost of writing this large number of features is so high,

that when using a distributed filesystem, the serial implementation of EM runs nearly twice

as fast as the parallel version. However, that is not the point here, rather we show that in this

application for any reasonable number of features, eliminating the use of redundant storage

significantly improves performance. In addition, rare convergence checks in combination with

our reduce-map operation brought runtime down from average 83.93 seconds per iteration to

only 3.41 seconds, a 95.9% improvement.

4.5.2 Asynchronous MapReduce

The asynchronous programming model of Section 4.4 allows asynchronous parallel PSO [26, 27]

to be expressed in MapReduce. This variant of PSO is particularly well-suited for functions

whose execution time has high variance, with heterogeneous processors, and in distributed

environments [51]. To evaluate the behavior of asynchronous parallel PSO in MapReduce, we

vary the number of subiterations performed in each map task.

83

www.manaraa.com

0 10 205 15
0

20

40

60

80

100

120

140

Standard deviation of subiterations

A
ve

ra
ge

T
as

k
s

p
er

S
ec

on
d

Asynchronous
Synchronous

Figure 4.6: The average throughput (in tasks per second) for synchronous and asynchronous
PSO. The number of subiterations per map task vary, with an average of 50 and a standard
deviation ranging from 0 to 20. Throughput of the asynchronous implementation is unaffected
by task variance and is better even when there is no variance.

With a varying number of subiterations, asynchronous parallel PSO is distinctly

faster than standard parallel PSO. We draw the number of subiterations from a normal

distribution with a mean of 50 and a standard deviation ranging from 0 (no variability) to

20. Figure 4.6 shows the difference in throughput between synchronous and asynchronous

PSO in MapReduce as the standard deviation varies. The throughput of asynchronous PSO

is fairly constant at around 115 tasks per second. Synchronous PSO, on the other hand,

slows as the standard deviation increases, with a throughput of 73 tasks per second when the

standard deviation is 20.

Even with small or no standard deviation, asynchronous parallel PSO outperforms

the synchronous variant. With a standard deviation of 5, synchronous PSO with combined

reduce-map tasks requires an average of 0.58 seconds per iteration, while asynchronous PSO

requires only 0.44 seconds. Note that reduce-map operations provide a similar benefit with

variance as it does without variance: with separated reduce and map tasks, the time per

iteration for synchronous PSO rises to 0.82 seconds.

We speculate that the advantage of Asynchronous MapReduce in the case where task

times are uniform is due to a more even load on the master. With synchronous MapReduce, as

84

www.manaraa.com

12864 25616 512 768
0

20

40

60

80

Number of Processors

A
ve

ra
ge

T
as

k
s

p
er

S
ec

o
n

d
Synchronous
Asynchronous

Figure 4.7: The average throughput (in tasks per second) for synchronous and asynchronous
PSO with respect to the number of processors. The number of subswarms is equal to the
number of processors, and the number of subiterations is 1000.

soon as the last task in a dataset completes, the master is suddenly able to make assignments

to each of the slaves. This creates a bottleneck, not only in the master as it makes assignments,

but also in the slaves as they all start communicating at the same time. In Asynchronous

MapReduce, the master has no such bottleneck because it can make an assignment as soon as

a single task completes, without waiting for all other tasks in the dataset to finish. Figure 4.7

explores this phenomenon and shows that the effect increases with the number of processors.

4.6 Conclusion

This paper contributes the following approaches for making MapReduce more appropriate

for computationally intensive iterative algorithms:

• Checkpointing: we combine direct task-to-task communication with strategic use of a

distributed filesystems to improve performance while preserving fault tolerance.

• The reduce-map operation: this operation is a combination of the reduce and map

tasks which span successive iterations. It eliminates unnecessary communication and

scheduling latency.

85

www.manaraa.com

• A generator-callback model for task management: This model provides for both greater

flexibility in the scheduling of tasks and better supports operations typically found in

iterative programs, such as convergence checking to be scheduled less frequently and

outside of the regular MapReduce iterations.

• Fully asynchronous operation: iterative algorithms which are naturally expressed in

terms of asynchronous message passing can now be easily expressed and efficiently run.

These approaches improve the efficiency of MapReduce for all iterative algorithms

but also make MapReduce feasible for a wide range of applications where its overhead was

previously too high to be practical.

86

www.manaraa.com

Part II

Reconsidering Particle Swarm Optimization in a Parallel Context

The improvements to the MapReduce model described in Part I, along with the

associated implementation, provide a flexible and efficient framework for experimenting with

a variety of approaches to parallel optimization. The basic MapReduce PSO algorithm,

shown in Part I, performs one iteration of PSO per MapReduce stage. Chapter 5 introduces

a novel decomposition of the operations of PSO to perform two iterations concurrently in the

same MapReduce stage. Chapter 6 presents a PSO topology that organizes particles into

subswarms to perform multiple iterations of each subswarm per MapReduce stage, without

requiring any additional communication or centralized coordination. Chapter 7 reviews these

and other techniques to show how parallel PSO can be applied in a variety of situations and

to emphasize the need for considering parallel computation throughout the development of

variants of PSO. Together, these chapters demonstrate that effective parallel optimization

algorithms can use communication sparingly without requiring centralized coordination.

87

www.manaraa.com

Chapter 5

Speculative Evaluation in Particle Swarm Optimization

Published in Proceedings of PPSN 2010 in conjunction with Matthew Gardner [62]

This chapter considers a unique approach to parallelizing PSO. While some functions

benefit from increased swarm sizes, others show diminishing returns. As an alternative

to using additional processors to increase the swarm size, it is possible to perform two or

more iterations at the same time with a small swarm. The implementation is built on the

adaptation of PSO to Mapreduce described in Chapter 2 and is built on the MapReduce

system described in Chapters 3 and 4. This platform made it straightfoward to debug this

stochastic algorithm and ensure that it gives numerically identical results to standard parallel

PSO.

Abstract

Particle swarm optimization (PSO) has previously been parallelized only by adding more

particles to the swarm or by parallelizing the evaluation of the objective function. However,

some functions are more efficiently optimized with more iterations and fewer particles.

Accordingly, we take inspiration from speculative execution performed in modern processors

and propose speculative evaluation in PSO (SEPSO). Future positions of the particles are

speculated and evaluated in parallel with current positions, performing two iterations of PSO

at once.

We also propose another way of making use of these speculative particles, keeping

the best position found instead of the position that PSO actually would have taken. We

88

www.manaraa.com

show that for a number of functions, speculative evaluation gives dramatic improvements

over adding additional particles to the swarm.

5.1 Introduction

Particle swarm optimization (PSO) has been found to be a highly robust and effective

algorithm for solving many types of optimization problems. For much of the algorithm’s

history, PSO was run serially on a single machine. However, the world’s computing power

is increasingly coming from large clusters of processors. In order to efficiently utilize these

resources for computationally intensive problems, PSO needs to run in parallel.

Within the last few years, researchers have begun to recognize the need to develop

parallel implementations of PSO, publishing many papers on the subject. The methods

they have used include various synchronous algorithms [25, 28] and asynchronous algorithms

[26, 27, 29]. Parallelizing the evaluation of the objective function can also be done in some

cases, though that is not an adaption of the PSO algorithm itself and thus is not the focus of

this paper.

These previous parallel techniques distribute the computation needed by the particles

in the swarm over the available processors. If more processors are available, these techniques

increase the number of particles in the swarm. The number of iterations of PSO that the

algorithms can perform is thus inherently limited by the time it takes to evaluate the objective

function—additional processors add more particles, but do not make the iterations go any

faster.

For many functions there comes a point of diminishing returns with respect to

adding particles. Very small swarms do not produce enough exploration to consistently

find good values, while large swarms result in more exploration than is necessary and waste

computation. For this reason, previous work has recommended the use of a swarm size of

50 for PSO [39]. Thus, in at least some cases, adding particles indefinitely will not yield an

efficient implementation.

89

www.manaraa.com

In this paper we consider PSO parallelization strategies for clusters of hundreds of

processors and functions for which a single evaluation will take at least several seconds. Our

purpose is to explore the question of what to do with hundreds of processors when 50 or 100

particles is the ideal swarm size, and simply adding particles yields diminishing returns.

To solve this problem, we propose a method for performing two iterations of PSO

at the same time in parallel that we call speculative evaluation. The name comes from an

analogy to speculative execution (also known as branch prediction), a technique commonly

used in processors. Modern processors, when faced with a branch on which they must wait

(e.g., a memory cache miss), guess which way the branch will go and start executing, ensuring

that any changes can be undone. If the processor guesses right, execution is much farther

ahead than if it had idly waited on the memory reference. If it guesses wrong, execution

restarts where it would have been anyway.

We show that the results of standard PSO can be reproduced exactly, two iterations

at a time, using a speculative approach similar to speculative execution. We prove that the

standard PSO equations can be factored such that a set of speculative positions can be found

which will always include the position computed in the next iteration. By computing the

value of the objective function for each of the speculative positions at the same time the

algorithm evaluates the objective function for the current position, it is possible to know the

objective function values for both the current and the next iteration at the same time. The

resulting implementation runs efficiently on large clusters where the number of processors is

much larger than a typical or reasonable number of particles, producing better results in less

“wall-clock” time.

The balance of this paper is organized as follows. Section 5.2 describes the particle

swarm optimization algorithm. Section 5.3 describes how speculative evaluation can be done

in parallel PSO to perform two iterations at once. In Section 5.4 and Section 5.5 we present

our results and conclude.

90

www.manaraa.com

5.2 Particle Swarm Optimization

Particle swarm optimization was proposed in 1995 by James Kennedy and Russell Eber-

hart [15]. This social algorithm, inspired by the flocking behavior of birds, is used to quickly

and consistently find the global optimum of a given objective function in a multi-dimensional

space.

The motion of particles through the search space has three components: an inertial

component that gives particles momentum as they move, a cognitive component where

particles remember the best solution they have found and are attracted back to that place,

and a social component by which particles are attracted to the best solution that any of their

neighbors have found.

At each iteration of the algorithm, the position xt and velocity vt of each particle are

updated as follows:

vt+1 = χ
[
vt + φPUP

t ⊗ (xPt − xt) + φNUN
t ⊗ (xNt − xt)

]
(5.1)

xt+1 = xt + vt+1 (5.2)

where UP
t and UN

t are vectors of independent random numbers drawn from a standard

uniform distribution, the ⊗ operator is an element-wise vector multiplication, xP (called

personal best) is the best position the current particle has seen, and xN (called neighborhood

best) is the best position the neighbors of the current particle have seen. The parameters φN ,

φP , and χ are given prescribed values required to ensure convergence (2.05, 2.05, and .73,

respectively) [24].

Changing the way neighbors are defined, usually called the “topology,” has a significant

effect on the performance of the algorithm. In the Ring topology, each particle has one

neighbor to either side of it; in the Complete topology, every particle is a neighbor to every

other particle [39]. In all topologies a particle is also a neighbor to itself in that its own

position and value are considered when updating the particle’s neighborhood best, xN . Thus

91

www.manaraa.com

with p particles, using the Ring topology each particle with index i has three neighbors: i− 1,

i (itself), and i+ 1. With the Complete topology, each particle has p neighbors.

In this paper we use these topologies as well as a parallel adaptation of the Complete

topology, called Random, that has been shown to approximate the behavior of Complete

with far less communication [63]. In the Random topology, each particle randomly picks two

other particles to share information with at each iteration, along with itself. Thus in both

the Ring and the Random topologies, all particles have three neighbors.

5.3 Speculative Evaluation in PSO

The PSO algorithm can be trivially parallelized by distributing the computation needed for

each particle across processors. But for some functions adding particles yields diminishing

returns. That is, adding processors does not help reach any given level of fitness appreciably

faster. Instead of adding particles, speculative evaluation performs iterations two at a time.

Speculative evaluation is made possible by refactoring PSO such that evaluating the

objective function is separate from the rest of the computation. For simplicity, this discussion

will describe the case where PSO is performing function minimization using the Ring topology.

In this example, each particle has two neighbors, the “right neighbor” and “left neighbor,”

whose positions are represented as xR and xL respectively. Though we will only describe the

case of the Ring topology, this method is easily extended to arbitrary topologies.

The refactoring hinges on the idea that once the random coefficients UP
t and UP

t are

determined, there are only a few possible updates to xN and xP . For the Ring topology there

are 7 possible update cases, identified in Table 5.1. We label each case with an identifier

referring to the source of the update: a minus sign (−) represents no update, L represents

an update to xN coming from the left neighbor, R represents an update to xN coming from

the right neighbor, and S represents an update to either xP or xN coming from the particle

itself. As an example, (S,−) refers to the case that the particle finds a new personal best,

but neither it nor its neighbors found a position that updated its neighborhood best. In the

92

www.manaraa.com

Table 5.1: All possible updates for a particle with two neighbors

Identifier Source of xP update Source of xN update

(−,−) No update No update
(−, L) No update Left Neighbor
(−, R) No update Right Neighbor
(S,−) Self No update
(S, L) Self Left Neighbor
(S,R) Self Right Neighbor
(S, S) Self Self

equations that follow, we refer to an unspecified update case as c, and to the set of cases

collectively as C.

In order to incorporate the determination of which case occurs into the position and

velocity update equations, we introduce an indicator function Ict+1 for each case c ∈ C. When

c corresponds to the case taken by PSO, Ict+1 evaluates to 1; otherwise it evaluates to 0. We

can then sum over all of the cases, and the indicator function will make all of the terms drop

to zero except for the case that actually occurs. For example, the indicator function for the

specific case (S,−) can be written as follows:

I
(S,−)
t+1

(
f(xt) , f

(
xLt
)
, f
(
xRt
)
, f
(
xPt−1

)
, f
(
xNt−1

))
=


1 if f(xt) < f

(
xPt−1

)
and f

(
xNt−1

)
< min

(
f(xt) , f

(
xLt
)
, f
(
xRt
))

0 otherwise

(5.3)

For each case c ∈ C, there is also a corresponding velocity update function Vc
t+1. When

the case is known, the specific values of xPt and xNt may be substituted directly into (5.1).

For example, in case (S,−), xPt = xt, as xPwas updated by the particle’s current position,

and xNt = xNt−1, as xN was not updated at iteration t:

V
(S,−)
t+1

(
vt,xt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1, U

P
t , U

N
t

)
= χ

[
vt + φPUP

t ⊗(xt − xt) + φNUN
t ⊗

(
xNt−1 − xt

)]
(5.4)

93

www.manaraa.com

In the same way we can create notation for the position update function by substituting

into (5.2):

Xc
t+1

(
xt,vt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1, U

P
t , U

N
t

)
= xt + Vc

t+1

(
vt,xt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1, U

P
t , U

N
t

)
(5.5)

With this notation we can re-write the original PSO velocity equation (5.1), introducing

our sum over cases with the indicator functions. The velocity (5.1) and position (5.2) equations

become:

vt+1 =
∑
c∈C

[
Ict+1

(
f(xt) , f

(
xLt
)
, f
(
xRt
)
, f
(
xPt−1

)
, f
(
xNt−1

))
Vc
t+1

(
xt,vt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1, U

P
t , U

N
t

)]
(5.6)

xt+1 =
∑
c∈C

[
Ict+1

(
f(xt) , f

(
xLt
)
, f
(
xRt
)
, f
(
xPt−1

)
, f
(
xNt−1

))
Xc
t+1

(
xt,vt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1, U

P
t , U

N
t

)]
(5.7)

In this form the important point to notice is that there are only 7 values (for this Ring

topology) in the set {Xc
t+1 : c ∈ C} and that none of them depend upon f(xt) or any other

objective function evaluation at iteration t. Note also that while there are random numbers

in the equation, they are assumed fixed once drawn for any particular particle at a specific

iteration. Thus PSO has been refactored such that the algorithm can begin computing all

7 of the objective function evaluations potentially needed in iteration t+ 1 before f(xt) is

computed. Once the evaluation of f(xt) is completed for all particles only one of the indicator

functions Ict+1 will be set to 1; hence only one of the positions Xc
t+1 will be kept.

Although this speculative approach computes f(Xc
t+1) for all c ∈ C, even those for

which Ict+1 = 0, these extra computations will be ignored, and might just as well never have

94

www.manaraa.com

been computed. We call the set {f(Xc
t+1) : c ∈ C} “speculative children” because only one of

them will be needed.

To see the value of this refactoring, suppose that 800 processors are available, and

that the evaluation of the objective function takes one hour. If we only want a swarm of 100

particles, 700 of the processors would be sitting idle for an hour at every iteration, and it

would take two hours to run two iterations. If instead we perform speculative evaluation,

sending each of the f(Xc
t+1) to be computed at the same time as f(xt), we could create a

swarm of size 100, each particle with 7 speculative evaluations (700 processors dedicated to

speculative evaluation), thus using all 800 processors and performing two iterations in one

hour.

In order to do two iterations at once, we use 8 times as many processors as there are

particles in the swarm. If these processors were not performing speculative evaluation, they

might instead be used for function evaluation needed to support a large swarm. This raises

the question of whether a swarm of 100 particles doing twice as many iterations outperforms

a swarm of 800 particles. We show in the rest of this paper that in many instances a smaller

swarm performing more iterations does in fact outperform a larger swarm. We acknowledge

that both intuition and prior research [63] indicate that the optimization of deceptive functions

benefits greatly from large and even very large swarm sizes. Thus this work will focus on less

deceptive functions.

5.3.1 Implementation

The number of speculative evaluations needed per particle depends on the number of neighbors

each particle has. In a swarm with p particles and n neighbors per particle, (2n + 1)p

speculative evaluations are necessary (each additional neighbor adds two rows to Table 5.1).

This dependence on the number of neighbors necessitates a wise choice of topology. The use

of the Complete topology, where every particle is a neighbor to every other particle, would

require O(p2) speculative evaluations per iteration. It is much more desirable to have a sparse

95

www.manaraa.com

topology, where O(np) is much smaller than O(p2). However, some functions are better

optimized with the Complete topology and the quick spread of information it entails than

with sparse topologies. In such cases, we use the Random topology described in Section 5.2.

To aid in describing our implementation, we introduce a few terms. We use pt to denote

a particle at iteration t and st+1 to denote one of pt’s speculative children, corresponding to

one of the rows in Table 5.1. nt is a neighbor of particle pt. Sets of particles are given by p,

s, or n, whereas single particles are simply p, s, or n.

A particle at iteration t− 1 that has been moved to iteration t using (5.1) and (5.2),

but whose position has not yet been evaluated, is denoted as p−et . Once its position has been

evaluated, but it has still not yet received information from its neighbors, it is denoted as

p−nt . Only when the particle has updated its neighborhood best is it a complete particle at

iteration t. It is then simply denoted as pt.

The outline of the speculative evaluation in PSO (SEPSO) algorithm is given in

Algorithm 12.

Program 12 Speculative Evaluation PSO (SEPSO)

1: Move all pt−1 to p−et using (5.1) and (5.2)
2: For each p−et , get its neighbors n−et and generate s−et+1 according to (5.5).
3: Evaluate all p−et and s−et+1 in parallel
4: Update personal best for each p−et and s−et+1, creating p−nt and s−nt+1

5: Update neighborhood best for each p−nt , creating pt
6: for each pt do
7: Pick s−nt+1 from s−nt+1 that matches the branch taken by pt according to (5.7).
8: Pass along personal and neighborhood best values obtained by pt, making p−nt+1

9: end for
10: Update neighborhood best for each p−nt+1, creating pt+1

11: Repeat from Step 1 until finished

5.3.2 Using All Speculative Evaluations

In performing speculative evaluation as we have described it, 2n+ 1 speculative evaluations

are done per particle, while all but one of them are completely ignored. It seems reasonable

to try to make use of the information obtained through those evaluations instead of ignoring

96

www.manaraa.com

it. Making use of this information changes the behavior of PSO, instead of reproducing it

exactly as the above method explains, but the change turns out to be an improvement in our

context.

To make better use of the speculative evaluations, instead of choosing the speculative

child that matches that branch that the original PSO would have taken, we take the child

that has the best value. The methodology is exactly the same as above except for the process

of choosing which speculative child to accept. The only change needed in Algorithm 12 is in

step 7, where the s−et+1 with the best value is chosen from s−et+1 instead of with the matching

branch. We call this variant “Pick Best”.

5.4 Results

In our experiments we compared our speculative PSO algorithm to the standard PSO

algorithm. At each iteration of the algorithms, we use one processor to perform one function

evaluation for one particle, be it speculative or non-speculative. The speculative algorithm

actually performs two iterations of PSO at each “iteration,” so we instead call each “iteration”

a “round of evaluations.” For benchmark functions with very fast evaluations this may not

be the best use of parallelism in PSO. But for many real-world applications, the objective

function takes on the order of at least seconds (or more) to evaluate; in such cases our

framework is reasonable.

In each set of experiments we keep the number of processors for each algorithm

constant. In all of our experiments SEPSO uses topologies in which each particle has two

neighbors in addition to itself. As shown in Table 5.1, this results in 7 speculative evaluations

per particle. With one evaluation needed for the original, non-speculative particle, we have

a total of 8p evaluations for every two iterations, where p is the number of particles in the

speculative swarm. In order to use the same resources for each algorithm, we compare swarms

of size p in the speculative algorithms with swarms of size 8p in standard PSO.

97

www.manaraa.com

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 0 100 200 300 400 500 600 700 800 900 1000

B
e
st

 F
u
n
ct

io
n
 V

a
lu

e

Rounds of Evaluations

SEPSO
SEPSO Pick Best

PSO Ring
PSO Random

PSO Complete

Figure 5.1: Function Sphere with a swarm that uses 240 processors per round of evaluations.
We show 10th and 90th percentiles every 100 iterations. Note that PSO Complete requires
O(p2) messaging and may not be practical in many cases.

As discussed in Section 5.3.1, where the Complete topology would normally be used,

we use a Random topology in our speculative algorithm, as Complete leads to an explosion of

speculative evaluations. For the standard PSO baseline we have included experiments with

the Ring and the Random topologies, both with two neighbors, as well as for the Complete

topology. It is important to note however, that in many cases the Complete topology is not a

practical alternative in the context of large swarms on large clusters where the messaging

complexity is O(p2) and can overwhelm the system.

We follow the experimental setup used in [39]. All functions have 20 dimensions, and

all results shown are averages over 20 runs. For ease of labeling, we call our speculative

algorithm SEPSO, the variant SEPSO Pick Best, and standard PSO just PSO and identify

the topology in a suffix, “PSO Ring” for example.

The benchmark function Sphere (f(x) =
∑D

i=1 x
2
i) has no local optima and is most

efficiently optimized using a small swarm but many iterations. In our experiments with

Sphere, we use 240 processors; thus 30 particles for SEPSO and 240 for PSO. In Figure 5.1, we

can see that SEPSO clearly beats PSO with a Random topology or a Ring topology. SEPSO

approaches the performance of PSO with the Complete topology, even though PSO with the

Complete topology requires O(p2) communication. SEPSO Pick Best handily outperforms

all other algorithms in this problem.

98

www.manaraa.com

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

P
e
rc

e
n
t

o
f

S
w

a
rm

s
W

it
h
 a

 B
e
st

 N
e
a
r

Z
e
ro

Rounds of Evaluations

SEPSO
SEPSO Pick Best

PSO Ring
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
e
rc

e
n
t

o
f

S
w

a
rm

s
W

it
h
 a

 B
e
st

 N
e
a
r

Z
e
ro

Rounds of Evaluations

PSO Random
PSO Complete

SEPSO Pick Best
SEPSO

Figure 5.2: Function Griewank with a swarm that uses 800 processors per round of evaluations,
and function Bohachevsky with a swarm that uses 480 processors per round of evaluations.

The benchmark function Griewank is defined by the equation f(x) = 1
4000

∑D
i=1 x

2
i −

ΠD
i=1 cos

(
xi√
i

)
+ 1. It is best solved in PSO using the Ring topology, as Complete is prone to

premature convergence on local optima. Griewank has a global optimum with a value of 0,

and sometimes the swarm finds the optimum and sometimes it does not. Instead of showing

average function value at each iteration, a more enlightening plot for Griewank shows the

percent of runs that have found the global optimum by each iteration.

PSO and SEPSO get caught in local minima with small swarm sizes so we show results

in Figure 5.2 for swarms of size 100 (SEPSO) and 800 (standard) using the Ring topology.

Figure 5.2 shows that SEPSO quickly finds the global optimum, between two and three times

faster than running standard PSO.

In Figure 5.2 we also show results for the Bohachevsky function, defined as f(x) =∑D
i=1(x2

i + 2x2
i+1 − .3 cos(3πxi)− .4 cos(4πxi+1) + .7). Bohachevsky is a unimodal function

best optimized with a Complete swarm. It is similar to Griewank in that there is a global

optimum with a value of 0, and swarms either find the optimum or get stuck. Both SEPSO

algorithms find the optimum much faster than PSO Random, though only SEPSO Pick

Best beats PSO Complete. Also, while the smaller swarm size of SEPSO gets stuck 75% of

the time, when using SEPSO Pick Best with the same swarm size, the algorithm finds the

optimum every time.

99

www.manaraa.com

Previous work has shown that the optimization of highly deceptive functions like

Rastrigin (f(x) =
∑D

i=1 (x2
i − 10 cos (2πxi) + 10)) benefit greatly from the addition of parti-

cles. Smaller swarms get caught in local optima, up to swarms of at least 4000 particles [63].

Because our speculative algorithms have a significantly smaller swarm size, they get stuck at

higher values while the larger swarms performing regular PSO continue to improve the best

value found. Our experiments with SEPSO on Rastrigin were predicably lack luster, yielding

an average value of 31 after 1000 evaluations, as compared to 10 for standard PSO.

5.5 Conclusions

We have described how parallel implementations of particle swarm optimization can be

modified to allow additional processors to increase the number of iterations of the algorithm

performed, instead of merely adding more particles to the swarm. Using our modifications,

the original PSO algorithm is exactly reproduced two iterations at a time. This technique

requires more function evaluations per iteration than regular PSO, but for some functions

still performs better when run in a parallel environment. We have also described a method

for making use of extra speculative evaluations that performs very well on some functions.

There are some functions for which very little exploration needs to be done; Sphere is

an example of such a function. For such functions the best use of processors is to have a small

swarm performing speculative evaluation with our Pick Best method, where all speculative

evaluations are used.

There are other functions for which it seems there is never enough exploration, such

as the Rastrigin function. It has been shown that up to 4000 particles there is no point at

which “enough” exploration has been done [63]. With such functions, the smaller swarm

size required by speculative evaluation is not able to produce enough exploration to perform

better than standard PSO.

Griewank and Bohachevsky are functions between Sphere and Rastrigin. They are

deceptive and prone to premature convergence, but by adding particles to the swarm a

100

www.manaraa.com

point is reached where “enough” exploration is done, and the algorithm finds the optimum

essentially all of the time. For such functions, the best approach seems to be to increase

the swarm size until “enough” exploration is reached, then use extra processors to perform

speculative evaluation and increase the number of iterations performed. Sphere and Rastrigin

can be thought of as special cases of these types of functions; Sphere simply needs a very

small swarm size to produce “enough” exploration, and Rastrigin requires a very large swarm.

We expect that for all functions there is a swarm size for which additional particles are less

useful than additional iterations.

Large parallel clusters are often required to successfully optimize practical modern

problems. To properly use PSO with such clusters, a balance needs to be made between using

processors to increase the swarm size and using them to increase the speed of the algorithm.

This work is a first step in that direction.

101

www.manaraa.com

Chapter 6

The Apiary Topology: Emergent Behavior in Communities of Particle Swarms

Published in Proceedings of PPSN 2012 [40]

This paper presents a communication topology for subswarms in PSO which is well

suited to parallel computation. For objective functions with fast evaluation times, assigning

a single particle per processor requires impractically large amounts of communication, so

it is much more efficient to assign a group of particles to each processor. In contrast with

other subswarm-style variants of PSO that require centralized coordination of migration, this

approach uses topologies, which are part of the standard definition of PSO.

Abstract

In the natural world there are many swarms in any geographical region. In contrast, Particle

Swarm Optimization (PSO) is usually used with a single swarm of particles. We define a

simple new topology called Apiary and show that parallel communities of swarms give rise to

emergent behavior that is fundamentally different from the behavior of a single swarm of

identical total size. Furthermore, we show that subswarms are essential for scaling parallel

PSO to more processors with computationally inexpensive objective functions. Surprisingly,

subswarms are also beneficial for scaling PSO to high dimensional problems, even in single

processor environments.

102

www.manaraa.com

6.1 Introduction

Particle Swarm Optimization (PSO) is a continuous function optimization algorithm inspired

by the flocking behaviors of birds and insects. It is typically used with small swarms of 20

to 50 particles organized in simple topologies that do not fully reflect the complex social

interactions of insects. In agriculture, for example, bees are managed in sets of hives called

apiaries. The number of hives in an apiary usually ranges from 10 to 150.

Using conventional topologies, a single swarm of particles often fails to scale both to

large numbers of processors and to high-dimensional problems. First, with a large number

of processors and an inexpensive objective function, communication costs make parallel

PSO with a single swarm impractical. Parallel PSO naturally works well for problems with

computationally expensive function evaluations, but for inexpensive objective functions, the

time to communicate a single position can exceed the time to perform a function evaluation.

Second, for high-dimensional problems, particles are prone to premature convergence. Even

for Sphere, the simplest of benchmark functions, standard PSO struggles to find the global

optimum when the number of dimensions is 400 or greater.

Multiple swarms have been used to scale parallel PSO for inexpensive objective

functions but have not been considered for scaling to high-dimensional problems. Semi-

independent swarms of particles provide a natural way to parallelize the computation of PSO

across a set of processors without requiring instantaneous communication [25]. However, the

behavior of subswarms has not been explored, particularly with respect to high-dimensional

problems.

The Apiary topology, proposed in Section 6.3, spreads the population of particles among

a set of small subswarms. In this topology, a subswarm is a social entity which lies between

the individual particle and the full population and which serves as another source of emergent

behavior. Each subswarm consists of a fixed set of particles and is mostly independent of

other subswarms. Periodically, a single particle in each subswarm communicates with a few

103

www.manaraa.com

particles in other subswarms. This communication between subswarms is rare and limited,

so computation is particularly well suited to parallel computation.

The Apiary topology helps PSO scale, both to large numbers of processors and to high-

dimensional objective functions. Unlike some other proposed PSO techniques using subswarms,

this topology is simple, clearly defined, and appropriate for parallel PSO. Experiments,

described in Section 6.4, show significant improvements over standard PSO. Even in single

processor environments, apiaries produce better results in the same time and are less prone to

premature convergence for every benchmark function we tested. These results are presented

and discussed in Section 6.4.1. The standard parameters are justified in Section 6.4.2, along

with indications of when these parameters might be changed. Parallel PSO with Apiary

is compared in Section 6.4.3. Despite inexpensive functions being particularly challenging

for parallelization, the run time is reduced from 256 minutes with a single processor to 17

minutes with 40 processors.

6.2 Background Material: Particle Swarm Optimization

Particle Swarm Optimization, proposed by Kennedy and Eberhart [15], simulates the motion

of particles in the domain of an objective function. These particles search for the global

optimum by evaluating the function as they move. During each iteration, each particle is

pulled toward the best position it has sampled, known as the personal best, and the best

position of any particle in its neighborhood, known as the neighborhood best.

Constricted PSO is generally considered the standard variant [39]. Each particle’s

position x0 and velocity v0 are initialized to random values based on a function-specific

feasible region. During iteration t, the following equations update the ith component of a

particle’s position xt and velocity vt with respect to the personal best xPt−1 and neighborhood

best xNt−1 from the preceding iteration:

vt,i = χ
[
vt−1,i + φPuPt−1,i(x

P
t−1,i − xt−1,i) + φNuNt−1,i(x

N
t−1,i − xt−1,i)

]
(6.1)

104

www.manaraa.com

xt,i = xt−1,i + vt,i (6.2)

where xP is the personal best, xN is the neighborhood best, φP and φN are usually set

to 2.05, uPt,i and uNt,i are samples drawn from a standard uniform distribution, and χ =

2/
∣∣∣2− φ−√φ2 − 4φ

∣∣∣ where φ = φP + φN [24].

The neighborhoods within a swarm are defined by the topology graph. The choice

of topology can have a significant effect on performance [64]. Additionally, the topology

determines task dependencies and overhead in parallel PSO [63]. The Ring50 topology, a

swarm of 50 particles where each particle has a single neighbor on either side, is a standard

starting point [39].

6.3 The Apiary Topology

The Apiary topology is a dynamic topology of independent subswarms which occasionally

communicate with each other. Each subswarm has an inner topology, and the subswarms

are connected in an outer topology. In most iterations, the neighbors of each particle are

defined purely by the inner topology of its subswarm. After a fixed number of independent

subiterations, each subswarm communicates with its neighboring subswarms, as defined by

the outer topology. Each subswarm sends its neighbors the best value from any of its particles.

It updates the neighborhood best of a fixed set of particles (the neighborhood of the first

particle in the swarm) with the values from neighboring subswarms.

In the Apiary topology, subswarms share important characteristics with communities

in nature. Just as each bee colony has its own social structure, each subswarm has its

own particles and its own topology. Like bee colonies, the subswarms are independent and

rarely interact. Curiously, bees occasionally allow foreign forage bees to enter a hive if they

are fully loaded [65], and the native bees will be able to learn from those foreign bees if

they are from another colony or even another species [66]. Likewise, a single particle in

each subswarm occasionally engages in light communication with neighboring swarms. In

105

www.manaraa.com

this simple structure, subswarms are simple entities with a balance of independence and

interaction that favors emergent behavior.

This approach contrasts with previous attempts to define subpopulations in PSO.

Dynamic Multi-Swarm PSO [19] periodically shuffles by reassigning all particles to random

subswarms. This global reshuffling increases the amount of communication required in parallel

PSO and is incompatible with asynchronous parallel PSO [27]. In contrast, neighborhoods in

the Apiary topology are deterministic and require very little communication. Section 6.4.1

compares the performance of Dynamic Multi-Swarm PSO with that of the Apiary topology.

Most subswarm approaches have introduced strategies—some of them quite complex—to

manage the migration of particles between subswarms [20, 67–69]. Other works have used

subswarm-style topologies within a limited context [63], including completely independent

subswarms [25]. Romero and Cotta’s island-structured swarms [20], is limited to small

numbers of large subswarms and low-dimensional problems, and its conclusions do not seem

to apply to high-dimensional problems. In contrast to other approaches, the Apiary topology

is static and thus well suited to any implementation of parallel PSO, and it requires very

little communication between subswarms.

The inner and outer topologies, as well as the number of subiterations, are changeable

parameters. We recommend Ring for both the outer and inner topologies, with a starting

point of 5 particles per subswarm, 40 total subswarms, and 100 subiterations. These

recommendations are justified in Section 6.4.2.

6.4 Experimental Results

The Apiary topology provides significant improvements for both serial and parallel PSO

with respect to a variety of benchmark functions. Benchmark functions are computationally

inexpensive enough for large-scale experimentation but share interesting properties with

challenging real-life problems. We use the Ackley, Rastrigin, Rosenbrock, Schwefel 1.2, and

Sphere benchmark functions [52] with both 250 and 500 dimensions. Experiements were run

106

www.manaraa.com

on a Linux cluster consisting of 320 nodes (Dell PowerEdge M610). Each node is equipped

with two quad-core Intel Nehalem processors (2.8 GHz) and 24 GB of memory.

Each experiment was repeated at least 40 times. We report the median instead of

the mean because these distributions are skewed. The 10th and 90th percentiles illuminate

both the variability and skewness. We determine statistical significance using a one-sided

Monte Carlo permutation test [70]. A t-test would be inappropriate because it uses the mean

statistic and assumes a normal distribution, which we can not assume in part because of

skew. Each table cell is bolded if it is better than every other entry in its row with a p-value

of 0.05.

Each table and plot presents either the median number of evaluations required to

reach a threshold or the median best value at a fixed number of evaluations or iterations. The

notation Ringn denotes a ring topology where each particle has one neighbor on each side,

and Ringm–Ringn denotes an Apiary topology with a Ringm outer topology and a Ringn

inner topology. Each benchmark function is accompanied by its dimensionality, for example,

“Sphere-500.”

The balance of this section seeks to identify some of the most interesting observation

and give greater clarity and meaning to these results. Section 6.4.1 compares the Ring40–

Ring5 apiary with the standard recommendation of Ring. Section 6.4.2 justifies the particular

choice of Ring40–Ring5 as a standard starting point. Finally, Section 6.4.3 demonstrates the

suitability of the Apiary topology to parallel PSO by demonstrating its efficiency in a typical

parallel environment.

6.4.1 Apiaries in Serial PSO

Limiting the interaction between subswarms to once every 100 iterations might be expected

to compromise the performance of serial PSO in exchange for improved parallel efficiency,

but this social organization in fact improves performance even in serial PSO. Figures 6.1

and 6.2 show the progress toward convergence for 500 dimensional Rastrigin and Sphere

107

www.manaraa.com

0 0.5 1 1.5 2 2.5 3 3.5

·106

103.6

103.8

104

104.2

Number of Evaluations

B
es

t
V

a
lu

e

Ring50

Ring200

Ring40–Ring5

Figure 6.1: Convergence plot for Rastrigin in serial PSO, comparing an apiary (using 100
subiterations) with a swarm of the same total number of total particles (200) and a swarm of
50 particles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

10−10

10−5

100

105

Number of Evaluations

B
es

t
V

al
u

e

Independent40–Ring5

Ring200

Ring50

Ring40–Ring5

Figure 6.2: Convergence plot for Sphere in serial PSO, comparing an apiary (using 100
subiterations) with a swarm of the same number of total particles (200) and a swarm of 50
particles.

respectively. The Ring40–Ring5 apiaries require the same number of evaluations per iteration

as the Ring200 swarms, but they perform far better than the individual Ring swarms. Note

that the Ring200 swarm in Figure 6.2 converges more slowly than the Ring50 swarm because

it requires more evaluations per iteration.

One might wonder whether the performance of the Apiary topology are dependent on

the social interactions or whether they are merely due to the repetition of a high-variance

experiment. After all, running 40 independent swarms of 5 particles would be expected to

perform better than a single swarm of 5 particles. Figure 6.2 includes the abysmal results

of such an Independent40–Ring5 topology, thus dispelling this possibility. The difference

between the independent swarms and the apiary demonstrates emergent behavior.

108

www.manaraa.com

Table 6.1: Median number of function evaluations to reach a value of 10−10. The best cell in
each row is bolded if statistically significant.

Function Ring50 Ring200 Ring40–Ring5

Sphere-250 7.8×105 3×106 5.9×105

(10th, 90th) (7.6×105, 8.1×105) (3×106, 3.1×106) (5.9×105, 6×105)
Sphere-500 9.5×106 1.6×107 1.2×106

(10th, 90th) (3.5×106, 2.6×107) (1×107, 4×107) (1.2×106, 1.2×106)

Table 6.2: Median best value at a fixed number of function evaluations.

Function Ring50 Ring200 Ring40–Ring5

Ackley-250 20 20 20
(10th, 90th) (20, 20) (20, 20) (20, 20)

Ackley-500 20 20 20
(10th, 90th) (20, 21) (20, 21) (20, 20)

Rastrigin-250 2.6×103 2.3×103 1.9×103

(10th, 90th) (2.1×103, 2.9×103) (2×103, 2.5×103) (1.7×103, 2.1×103)
Rastrigin-500 1.2×104 1.2×104 4.1×103

(10th, 90th) (1.1×104, 1.3×104) (8.5×103, 1.2×104) (3.9×103, 4.5×103)
Rosenbrock-250 70 3.7×102 0.0012

(10th, 90th) (0.029, 3.4×102) (2.8×102, 4.5×102) (6.1×10−9, 4)
Rosenbrock-500 4.3×1012 4.1×1012 8.8×102

(10th, 90th) (4×1012, 4.6×1012) (3.8×1012, 4.3×1012) (7×102, 1.1×103)
Schwefel1.2-250 7.4×104 2.3×105 1.6×104

(10th, 90th) (4.6×104, 1.5×105) (2.1×105, 2.7×105) (1.2×104, 2.1×104)
Schwefel1.2-500 1.6×106 2.2×106 8.1×105

(10th, 90th) (1.1×106, 2.3×106) (1.8×106, 2.8×106) (7.1×105, 9.4×105)

We include results for the full range of benchmark functions in tabular form. In

the case of Sphere, all runs of all PSO variants eventually converge to the global minimum.

Table 6.1 reports the number of function evaluations to convergence. Table 6.2 reports

the best value obtained at a fixed number of function evaluations for the other benchmark

functions. The fixed number of evaluations for each function are equivalent to about 6 hours

of computation, specifically: 6× 106 for Ackley-250 and Ackley-500, 1× 107 for Rastrigin-250,

3.5× 106 for Rastrigin-500, 1× 107 for Rosenbrock-250, 5× 106 for Rosenbrock-500, 6× 106

for Schwefel1.2-250, and 2× 106 for Schwefel1.2-500. In all cases the apiary is best with

statistical significance. Though the results for the Ackley function are statistically significant,

the difference is small.

109

www.manaraa.com

Table 6.3: Median best value at a fixed number of function evaluations. The topology is
Ring40–Ring25 for Rastrigin and Ring40–Ring5 for Rosenbrock and Schwefel 1.2.

Function Apiary DMS-PSO
Rastrigin-250 1.5×103 4.8×102

(10th, 90th) (1.4×103, 1.6×103) (4×102, 5.9×102)
Rastrigin-500 3.3×103 1.3×103

(10th, 90th) (3×103, 3.6×103) (1.2×103, 1.6×103)
Rosenbrock-250 0.0012 1.3×102

(10th, 90th) (6.1×10−9, 4) (1.4, 2.3×102)
Rosenbrock-500 8.8×102 8.3×102

(10th, 90th) (7×102, 1.1×103) (6.4×102, 9.8×102)
Schwefel1.2-250 1.6×104 7×104

(10th, 90th) (1.2×104, 2.1×104) (5.1×104, 8.9×104)
Schwefel1.2-500 8.1×105 1.4×106

(10th, 90th) (7.1×105, 9.4×105) (1.2×106, 1.7×106)

For some functions, the Apiary topology outperforms Dynamic Multi-Swarm PSO [19]

(DMS-PSO) in serial, while for other functions, DMS-PSO outperforms the Apiary topology.

For Sphere-500, the Apiary topology finds the minimum faster with a small but statistically

significant advantage, while for Sphere-250, the situation is reversed (the full table is omitted

due to space constraints). Table 6.3 shows similarly mixed results for the other benchmark

functions.

6.4.2 Apiary Parameters

We now justify the basic apiary parameters of a Ring40 outer topology, a Ring5 inner

topology, and 100 subiterations. General recommendations set Ring50 as a standard swarm

topology [39] or even higher for difficult problems [63]. Previous subswarm topologies have

suggested that 50–100 particles per subswarm [20] or 32 particles per subswarm [25] give

ideal performance. In contrast, we recommend starting with small subswarms of about 5

particles.

Increasing the number of particles per subswarm or the total number of subswarms

provide improvements only in some circumstances. Table 6.4 compares Ring40–Ring5 to

Ring200–Ring5, an apiary with 5 times as many subswarms, and to Ring40–Ring25, an

110

www.manaraa.com

Table 6.4: Median best value at n function evaluations.

Function Ring40–Ring5 Ring200–Ring5 Ring40–Ring25

Rastrigin-250 1.9×103 1.7×103 1.5×103

(10th, 90th) (1.7×103, 2.1×103) (1.6×103, 1.9×103) (1.4×103, 1.6×103)
Rastrigin-500 4.1×103 3.8×103 3.3×103

(10th, 90th) (3.9×103, 4.5×103) (3.6×103, 4×103) (3×103, 3.6×103)
Rosenbrock-250 0.0012 2.6×102 0.27

(10th, 90th) (6.1×10−9, 4) (2×102, 3.2×102) (0.0016, 76)
Rosenbrock-500 8.8×102 5×103 9.4×102

(10th, 90th) (7×102, 1.1×103) (3.4×103, 1.4×104) (8.2×102, 1.2×103)
Schwefel1.2-250 1.6×104 1.5×105 3.7×104

(10th, 90th) (1.2×104, 2.1×104) (1.3×105, 1.6×105) (2.8×104, 4.8×104)
Schwefel1.2-500 8.1×105 1.6×106 1×106

(10th, 90th) (7.1×105, 9.4×105) (1.5×106, 1.8×106) (8.8×105, 1.2×106)

apiary with 5 times as many particles per subswarm. For most of the benchmark functions,

the Ring40–Ring5 apiary performs significantly better than either of the larger topologies.

Likewise, the Ring40–Ring5 topology significantly outperforms the others for Sphere-250 and

Sphere-500 (the table is omitted due to space). For such functions, the increased number

of evaluations per iteration offsets any increased exploration provided by the larger swarms.

On the other hand, both of the larger topologies are better for Rastrigin-250, Rastrigin-500,

and Rosenbrock-500. As the number of local minima in Rastrigin increases exponentially

with the number of dimensions, we conclude that larger swarms are preferable for highly

multimodal objective functions.

Changing the communication between swarms can affect performance dramatically.

Using a more connected outer topology, such as Complete, gives poor performance in serial

PSO in addition to requiring more communication in parallel PSO. Sharing the best value of

an arbitrary member of each subswarm instead of the best particle of each subswarm also

reduces performance. Setting the number of subiterations to 100 is high enough to provide

reasonable task granularity even for the least expensive benchmark functions in parallel PSO.

111

www.manaraa.com

0 0.2 0.4 0.6 0.8 1

·107

10−4

100

104

108

Number of Evaluations

B
es

t
V

al
u

e

Ring50

Ring40–Ring5

(a) Convergence plot (in serial)

0 240180120 30060
10−5

100

105

1010

Minutes

B
es

t
V

al
u

e

Serial
Parallel

(b) Apiary in serial and parallel

Figure 6.3: Convergence plots of the Apiary topology for the Rosenbrock function with
respect to function evaluations and time.

6.4.3 Parallel Performance of Apiaries

Benchmark functions are extremely inexpensive, yet despite the high relative cost of com-

munication, the Apiary topology performs extremely well in parallel. Figure 6.3 shows the

results for the Rosenbrock function with both serial and parallel computation. Performing 100

iterations on 5 particles requires only 0.2 seconds, and parallel PSO took about 0.5 seconds

per iteration. With any realistically expensive function, the overhead of 0.3 seconds would be

negligible.

In a parallel context with a large number of spare processors, there may be limited

additional overhead in increasing the number of subswarms. In this light, we revisit the

conclusions from Section 6.4.2. In this context, the number of iterations of PSO is a more

appropriate measure than the number of function evaluations [63]. With respect to iterations,

112

www.manaraa.com

Table 6.5: Median best value at n iterations.

Function Ring40–Ring5 Ring200–Ring5 Ring40–Ring25

Rastrigin-250 1.9×103 1.7×103 1.5×103

(10th, 90th) (1.7×103, 2.1×103) (1.6×103, 1.9×103) (1.4×103, 1.6×103)
Rastrigin-500 4.2×103 3.8×103 3.4×103

(10th, 90th) (3.9×103, 4.5×103) (3.6×103, 4×103) (3×103, 3.6×103)
Rosenbrock-250 3.6×102 2.5×102 2.9×102

(10th, 90th) (2.6×102, 4.4×102) (1.9×102, 3.2×102) (2.1×102, 3.5×102)
Rosenbrock-500 2×104 4.2×103 1.5×104

(10th, 90th) (4.5×103, 3.1×107) (3×103, 9.4×103) (3.5×103, 7.5×106)
Schwefel1.2-250 1.7×105 1.4×105 1.7×105

(10th, 90th) (1.4×105, 2×105) (1.3×105, 1.6×105) (1.3×105, 2×105)
Schwefel1.2-500 1.8×106 1.6×106 1.8×106

(10th, 90th) (1.6×106, 2.2×106) (1.5×106, 1.8×106) (1.5×106, 2.1×106)

Table 6.4 compares Ring40–Ring5 with Ring200–Ring5 and Ring40–Ring25, which loosely

represent the situations where additional processors or time are available, respectively. If

extra resources are available, they clearly provide improvements in the pursuit of better

answers.

6.5 Conclusions and Future Work

Organizing particle swarms into communities of subswarms significantly improves the perfor-

mance of PSO. We attribute the improvement to emergent behavior from the social interaction

of particles. We speculate that small groups of particles might make progress on implicit

subproblems. Likewise, subswarms might help other subswarms get unstuck if they have

prematurely converged in individual dimensions. In any case, the behavior of particle swarm

apiaries is not explained by amount of communication, but rather the structure of the swarms.

Furthermore, we have shown that apiaries are particularly well-suited to parallel

computation. With low communication and adjustable task granularity, the topology is easily

adapted to varying computational architectures. With an inexpensive benchmark function,

parallel PSO was able to perform about 2 outer iterations per second and provide a speedup

of 15 on 40 processors. For any non-trivial function, the performance would be even more

113

www.manaraa.com

pronounced. Unlike other multi-swarm topologies like DMS-PSO [19], which requires frequent

global communication, the Apiary topology requires very little communication.

We believe there are several interesting areas that are open to future work. In

particular, organizing subswarms into hierarchies is a promising possibility. Apiaries are

effective with extremely small subswarms, so a hierarchical structure can be built with a low

branching factor. For example, a three-layer apiary would only have 53 = 125 particles, and a

four-layer apiary would have 54 = 625 particles, well within the range that can be computed

on a medium-size cluster.

Acknowledgments

The Fulton Supercomputing Lab at Brigham Young University generously provided 10

processor-years of resources.

114

www.manaraa.com

Chapter 7

Serial PSO Results Are Irrelevant in a Multi-core Parallel World

Published in Proceedings of CEC 2014 [71]

This chapter builds on previous chapters to identify the fundamental issues that arise

in parallel optimization and to consider how the appropriate use of resources depends on the

attributes of the objective function. On the one hand, processors are idle if they are waiting

for communication, but on the other hand, they may work in vain if they lack up to date

information from other processors.

Abstract

From multi-core processors to parallel GPUs to computing clusters, computing resources

are increasingly parallel. These parallel resources are being used to address increasingly

challenging applications. This presents an opportunity to design optimization algorithms that

use parallel processors efficiently. In spite of the intuitively parallel nature of Particle Swarm

Optimization (PSO), most PSO variants are not evaluated from a parallel perspective and

introduce extra communication and bottlenecks that are inefficient in a parallel environment.

We argue that the standard practice of evaluating a PSO variant by reporting function

values with respect to the number of function evaluations is inadequate for evaluating PSO in

a parallel environment. Evaluating the parallel performance of a PSO variant instead requires

reporting function values with respect to the number of iterations to show how the algorithm

scales with the number of processors, along with an implementation-independent description

of task interactions and communication. Furthermore, it is important to acknowledge the

115

www.manaraa.com

dependence of performance on specific properties of the objective function and computational

resources. We discuss parallel evaluation of PSO, and we review approaches for increasing

concurrency and for reducing communication which should be considered when discussing the

scalability of a PSO variant. This discussion is essential both for designers who are defending

the performance of an algorithm and for practitioners who are determining how to apply

PSO for a given objective function and parallel environment.

7.1 Introduction

Despite the overwhelming parallel nature of modern hardware, contributions to Particle

Swarm Optimization (PSO) are still evaluated from a purely serial perspective. Variants to

PSO may improve performance in a serial environment but worsen performance in a parallel

environment. For example, adaptive topologies ensure population diversity, but adaptation

usually requires global information about the swarm and either reduces concurrency or

increases communication costs. Researchers must understand these issues to evaluate PSO

parameters and variants, and practitioners must understand them to apply PSO effectively.

For the case of serial PSO, Bratton and Kennedy [39] addressed common issues such

as swarm size and motion equations in order to establish a common starting point for PSO,

but these conclusions do not directly apply to parallel PSO. While practical approaches to

parallel PSO are available, most PSO research does not consider issues raised by parallel

computation, such as communication and scaling the number of processors. We are not

aware of any general attempts to address the implementation-independent consequences of

parallelization. Now that computing clusters, multicore processors, and powerful GPUs are

commonplace, the behavior of parallel PSO must be a primary rather than a secondary

concern.

We organize the issues raised by PSO in a parallel environment into two categories,

processor scaling and task interaction, which both limit the degree of concurrency, the number

of tasks that can be computed simultaneously [32]. First, a PSO variant may scale poorly

116

www.manaraa.com

Iter. 1 Iter. 2 Iter. 3

(a) Low maximum degree
of concurrency (fewer tasks
than processors)

Iter. 1 Iter. 2 Iter. 3

(b) High interaction be-
tween tasks (too much com-
munication)

Task Function Evaluation Task Dependency Idle Processor

(c) Legend

Figure 7.1: Task dependencies for parallel PSO in two simple inefficient cases.

as the number of processors increases, independent of communication. For example, if the

maximum degree of concurrency is less than the total number of processors, then the average

degree of concurrency is limited because the processors are never all active. Different ways to

increase the number of concurrent tasks, such as increasing the swarm size, are not necessarily

equally effective. Second, interaction between tasks limits the average degree of concurrency

because tasks remain idle while waiting for communication. Additionally, communication

can affect performance if non-local information, if available, would make the work more

effective. Issues such as motion equations and topology determine the dependencies and

communication between tasks. Figure 7.1 illustrates how maximum degree of concurrency

and task interaction affect performance. In Figure 7.1a, the number of tasks is smaller

than the number of processors, so several processors are unused. In Figure 7.1b, every task

in one iteration interacts with every task in the next iteration, requiring a high level of

communication. In a task dependency diagram, the maximum degree of concurrency is given

by the number of tasks in a column, and the task interactions are given by the arrows.

Evaluation of any PSO variant must include discussion of the issues of processor scaling

and task interaction from an implementation-independent parallel perspective. For serial

117

www.manaraa.com

PSO, the implementation-independent performance of a PSO variant is usually measured with

respect to the number of function evaluations. For parallel PSO, measuring the performance

relative to the number of iterations gives the per-processor performance, which shows how

well the PSO variant can exploit all available processors. Analysis of task interaction and

communication of a variant gives an implementation-independent understanding of the

overhead it introduces. Together with the per-evaluation cost of the objective function and

the characteristics of the implementation and parallel hardware, the per-processor scaling

and task interactions reveal how the variant will perform in a particular computational

environment.

The paper proceeds as follows. Section 7.2 introduces parallel Particles Swarm

Optimization by describing PSO, considering the relationship between its performance and

the objective function, and reviewing approaches for the parallelization of PSO. The next

two sections discuss the issues that limit the efficiency of parallel PSO. Section 7.3 considers

scaling of processors independent of communication and ways to improve it. Section 7.4

considers the task interactions and communication introduced by a PSO variant in parallel

and ways to reduce bottlenecks and overhead. Finally, Section 7.5 concludes with a plea to

consider this parallel perspective when evaluating all variants of PSO.

7.2 Parallel PSO

This section gives an overview of Particle Swarm Optimization and its parallelization. Sec-

tion 7.2.1 reviews PSO and the standard Constricted PSO motion equations. Section 7.2.2

discusses the properties of objective functions that are relevant to optimization and the role

of benchmark functions in evaluating PSO. It also describes the benchmark functions used in

this paper. Section 7.2.3 discusses the decomposition of PSO into tasks in parallel PSO.

118

www.manaraa.com

7.2.1 Particle Swarm Optimization

Particle Swarm Optimization simulates the motion of particles in the domain of an objective

function. These particles search for the global optimum by evaluating the function as they

move. During each iteration of the algorithm, the position and velocity of each particle are

updated. Each particle is pulled toward the best position it has sampled, known as the

personal best, and toward the best position of any particle in its neighborhood, known as the

neighborhood best. This attraction is weak enough to allow exploration but strong enough to

encourage exploitation of good locations and to guarantee convergence.

Constricted PSO is generally considered the standard variant [39]. Each particle’s

position x0 and velocity v0 are initialized to random values based on a function-specific

feasible region. During iteration t, the following equations update the ith component of a

particle’s position xt and velocity vt with respect to the personal best xPt−1 and neighborhood

best xNt−1 from the preceding iteration:

vt,i = χ
[
vt−1,i + φPuPt−1,i(x

P
t−1,i − xt−1,i) +

φNuNt−1,i(x
N
t−1,i − xt−1,i)

]
(7.1)

xt,i = xt−1,i + vt,i (7.2)

where xP is the personal best, xN is the neighborhood best, φP and φN are usually set to 2.05,

uPt,i and uNt,i are samples drawn from a standard uniform distribution, and the constriction

constant χ = 2

|2−φ−
√
φ2−4φ|

where φ = φP + φN [24].

The neighborhoods within a particle swarm are defined by the swarm topology,

also known as the sociometry. The choice of topology can have a significant effect on the

performance of PSO [64]. Topologies also determine the amount of communication between

particles, which is especially important for parallel implementations of PSO.

119

www.manaraa.com

7.2.2 Objective Functions

The objective function has properties which determine the behavior of PSO. Functions may be

expensive or inexpensive in terms of the time per function evaluation, they may be unimodal

or highly multimodal, and they have some number of input dimensions. Some properties

of objective functions are easy to determine, while others are more elusive. In any case,

these properties have a great effect on the performance of PSO and must be considered when

tuning and running the algorithm. The usual ways of adapting PSO include motion equations,

swarm topology, and swarm size. Parallelization also provides a number of techniques that

must be considered for parallel PSO. The effect of these parameters for particular objective

functions can only be identified using empirical experimentation.

The ideal motion equations, topology, and swarm size for PSO depend on the objective

function. Under various benchmark functions, the ideal topology for one function may

perform very poorly for another function. The No Free Lunch Theorems for Optimization

show that this is true in general—if an algorithm performs well on average for one class of

functions then it must do poorly on average for other problems [21].

Benchmark functions are intended to share interesting properties with real-life functions

while being inexpensive to facilitate experimentation. We occasionally refer to a few well-

known benchmark functions. The Sphere function or parabola is fS(x) =
∑D

i=1 x
2
i . Particles

are initialized in the interval [−50, 50]D. The Griewank function is fG(x) = 1+ 1
4000

∑D
i=1 x

2
i −

ΠD
i=1 cos

(
xi√
i

)
. We use the 15-dimensional variant with the feasible region [−600, 600]15

(Griewank is more challenging with fewer dimensions than with more dimensions). The

Rastrigin function is fR(x) =
∑D

i=1 (x2
i − 10 cos (2πxi) + 10). We use the 50-dimensional

variant with the feasible region [−5.12, 5.12]50.

As there are inexpensive functions with complex landscapes and expensive functions

with simple landscapes, the behavior of PSO with respect to the function is the main issue.

For this purpose, benchmark functions are a useful and efficient tool for understanding the

effects of PSO with expensive objective functions even though the benchmark functions are

120

www.manaraa.com

themselves inexpensive. For example, a plot of performance with respect to iterations for

a smooth unimodal function with five minutes per evaluation would be similar to that of

Sphere.

Unlike in serial PSO, the time for each evaluation of the objective function is an

important consideration in parallel PSO. The evaluation time does not generally affect

the behavior of PSO, but an expensive function evaluation decreases the relative cost of

communication. In general, PSO is more sensitive to details of parallelization for inexpensive

objective functions than for expensive functions because the time spent in communication is

more likely to outweigh the time spent in function evaluations.

7.2.3 Parallelization of PSO

In order for an algorithm to be parallelized, its operations must be decomposed into tasks [32].

The most fine-grained decompositions that are generally possible with PSO correspond to a

task for each evaluation of the objective function. In specific cases, it may be possible to

decompose the objective function itself, but we limit the discussion and the term “parallel

PSO” to approaches that work for arbitrary objective functions. Even in the case of a

parallelized objective function, it may be beneficial to also use parallel PSO.

Particle Swarm Optimization is usually decomposed into a task for each function

evaluation, with one task per particle per iteration [25, 28, 72]. However, this is not always the

case, and parallel PSO may take several different forms depending on what work constitutes

each task, which mapping technique is used, and how the tasks interact. Some of these choices

may significantly affect the behavior of PSO, while others are implementation details that

may affect parallel performance and scalability but do not require rethinking at the PSO level.

For example, tasks may include the work of a single particle or multiple particles; combining

several particles into a single task can reduce communication given an appropriate choice of

swarm topology. Likewise, tasks may include only the function evaluation, with each particle’s

position, velocity, and neighborhood best updated in serial on a centralized master [25], or

121

www.manaraa.com

tasks may include the full particle update, with position, velocity, and neighborhood best

updates performed in parallel [28].

The performance of parallel PSO depends on the parallel computing environment,

including hardware. Networked clusters, multi-core computers, and graphics processing

units (GPUs) are all common parallel processing platforms, but they have very different

characteristics. Cluster are the standard way to scale to a large number of general-purpose

processors, but communication over a network is slow. Multi-core computers have much lower

communication costs but have a limited total processing power. A GPU is very effective for

massively parallel computation but faces restrictions on the operations that can be performed.

To a large degree, external considerations force a particular choice of computational platform.

For extremely inexpensive objective functions, graphics processing units (GPUs) are

an attractive platform for parallelization, but they are not applicable in all situations. GPUs

are extremely fast at performing floating point operations, and GPU-based implementations

of PSO can improve performance by an order of magnitude compared to a single processor [73].

GPUs perform well for objective functions that are floating point heavy, but they are less

effective for functions relying on integer operations or large amounts of data. Implementations

of PSO that use texture mapping on GPUs additionally require independence between

variables [74]. General-purpose parallel architectures, such as CUDA and OpenCL, offer a

more flexible approach to GPU-based parallel PSO [73].

In parallel PSO, tasks can be distributed to processors with either dynamic mapping

or static mapping techniques. With dynamic mapping, tasks are distributed at runtime,

often with a centralized scheduler. With static mapping, each particle is fixed to a specific

processor, which performs all updates to its state. Fully distributed implementations may

even use peer-to-peer networks for communication between particles [75]. Assuming that

position, velocity, and neighborhood best updates all occur in serial on a centralized processor

gives a poor understanding of behavior for a more distributed implementation. In general, it

is safe to make a simplifying assumption that parallel PSO is fully distributed.

122

www.manaraa.com

7.3 Processor Scaling Independent of Communication

The ideal case where communication is free separates the issue of how an algorithm takes

advantage of processors from the issue of task interaction. As the number of processors

increases, the maximum degree of concurrency—the maximum number of tasks that can be

computed simultaneously—must increase accordingly, or the additional processors are never

utilized. In a task-dependency graph such as noted earlier in Figure 7.1, the maximum degree

of concurrency is represented by the number of rows. While it is important to be able to

increase the maximum degree of concurrency as the number of processors increases, it is also

important to do so in the most effective way possible. A significant challenge for parallel

PSO is to have as high of a marginal improvement in performance as possible as the number

of processors increases.

Evaluating PSO algorithms as the number of processors increases or comparing PSO

variants at a fixed number of processors is not possible from the traditional serial perspective.

PSO algorithms are usually evaluated on their performance with respect to the number of

function evaluations, but this is not appropriate for parallel PSO, where function evaluations

are performed concurrently. Furthermore, criteria such as speedup or wallclock time per

iteration are only appropriate for evaluating a specific implementation of parallel PSO because

these measures are highly implementation-dependent. In a parallel context, the number of

function evaluations divided by the number of processors is a much better implementation-

independent scale with which to measure performance. If the number of particles is equal to

the number of processors, this is simply the number of iterations, and in other cases, it is

closely related. Comparing the performance of PSO with respect to the number of iterations

as the number of processors increases shows the scaling behavior, which may in turn depend

on the specific strategy for employing additional processors.

There are multiple ways to employ additional processors, and their effectiveness

depends on the objective function and computational resources. For example, Figure 7.2

shows the success rate of three different topologies as the number of processors increases. For

123

www.manaraa.com

16 16050 500
0

50

100

Swarm Size

P
er

ce
n
t

N
ea

r
Z

er
o

at
4
00

0
It

er
at

io
n

s

Sparse Ring
Dense Ring
Complete

Figure 7.2: Percent of swarms attaining a value near the global optimum of the Griewank
function at a fixed number of iterations. In the sparse ring topologies, each particle is
connected to 2 neighbors; in the dense ring topologies, each particle is connected to 20% of
the swarm; and in the complete topologies, each particle is connected to the entire swarm.

this particular objective function, the more densely connected swarms scale poorly with the

number of processors compared to the more sparsely connected swarms. In the remainder of

this section, we consider three approaches for increasing the maximum degree of concurrency

of parallel PSO: independent runs, increased swarm size, and speculative evaluation.

7.3.1 Independent Runs

The näıve—and perhaps most common—way to increase the maximum degree of concurrency

of PSO is to perform independent runs on different processors and take the best result after

the runs have completed. A common use case for independent runs is to measure variability

of PSO for a given objective function with a particular combination of parameters. While

this may provide some insight into the nature of the objective function, it is especially useful

for evaluating a variant of PSO. In fact, when evaluating parallel PSO relative to the number

of iterations, it is far more efficient to perform repeated experiments as parallel independent

sequential runs of PSO than by running a series of experiments on a parallel implementation.

Parallel independent runs of PSO will give better results than a single run of PSO with

the same parameters if there is any variability whatsoever between runs, but this approach is

124

www.manaraa.com

generally less effective than more sophisticated approaches. Running n independent runs of

PSO, each with k particles, is equivalent to a single parallel run of PSO with kn particles

partitioned into n disjoint sets of k particles. Since there is no communication between the

subswarms of particles, independent runs cannot share any information that might help

improve the search.

7.3.2 Swarm Size

Increasing the swarm size is generally a much more effective use of parallel resources than

simply running multiple serial copies of PSO. Unfortunately, many PSO variants have not

been tested at multiple swarm sizes to determine how well they scale. Serial PSO is typically

used with small swarms of about 50 particles, with slightly larger or smaller swarm sizes

as indicated by customized testing for the specific objective function [39]. We review the

general effects of increasing the swarm size and encourage testing the effects of swarm size in

all evaluation of PSO variants.

All else equal, an increase in swarm size increases the exploration of PSO and decreases

its variability between runs. If a particularly multimodal objective function requires more

particles for adequate exploration than the number of available processors, then this simulta-

neously increases the maximum degree of concurrency. Small swarms converge prematurely

for the Griewank and Rastrigin functions. In parallel PSO, where performance is plotted

against iterations instead of function evaluations, the benefit of large swarms is even more

pronounced. Figure 7.3 and Figure 7.4 show that for Griewank and Rastrigin respectively,

large swarms are not only less prone to premature convergence, but in parallel PSO they also

attain comparable values in fewer iterations.

Efficiently utilizing the processors is more challenging for functions that do not require

as much exploration, but even in an extreme case of a unimodal function, increasing the

swarm size up to the number of processors is always beneficial (aside from communication

issues discussed in Section 7.4). Although the ideal swarm size for the Sphere function in

125

www.manaraa.com

1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Iterations
P

er
ce

n
t

o
f

S
w

ar
m

s
N

ea
r

Z
er

o

Ring500,1
Ring160,1
Ring50,1
Ring16,1

Figure 7.3: Success rate on Griewank with respect to iterations for Ringn,1 with various
swarm sizes.

0 100200300400500600700800900

102

103

Iterations

B
es

t
F

u
n

ct
io

n
V

al
u

e Ring50,3
Ring160,8
Ring500,25
Ring1600,80

Figure 7.4: PSO performance on Rastrigin with respect to iterations with various topologies.

serial PSO is about 30 particles, Figure 7.5 shows that a greater swarm size always gives

improvements in parallel PSO if additional processors are available. However, the marginal

improvement diminishes as the swarm size increases (note the log scale), so it is important to

find PSO variants that scale as well as possible. For example, organizing a large swarm of

particles into subswarms is generally more effective than organizing the swarm into a large

ring [40].

7.3.3 Speculative Evaluation

It seems intuitively obvious that if the number of particles is less than the number of

processors, then some of those processors would be unused at each iteration. However, the

work associated with a particle can be split into multiple tasks by reorganizing the work

126

www.manaraa.com

100 100010 300 300030
10−9

10−5

10−1

103

Swarm Size
B

es
t

V
al

u
e

a
t

40
0

It
er

at
io

n
s

Figure 7.5: Performance of PSO for the Sphere function with a complete topology at various
swarm sizes. If additional processors are available, increasing the swarm size is always
beneficial, even in the extreme case of a unimodal function.

performed in consecutive iterations of PSO. In this manner, speculative evaluation allows

PSO to perform two iterations concurrently [62]. Figure 7.6 depicts the task dependencies of

PSO with speculative evaluation. At the cost of using multiple processors for each particle,

and thus requiring the number of particles to be fewer than the number of processors, PSO

with speculative evaluation can reach values much more quickly for appropriate objective

functions. Where premature convergence is a concern, increasing swarm size may be a more

valuable use of resources, but if exploration is adequate, speculative evaluation can halve the

runtime of parallel PSO.

7.4 Task Interaction and Communication

Task interactions limit the performance of parallel PSO by causing processors to be idle

while sending or receiving communication or to use outdated information. The effect of task

interaction depends on the objective function and computational environment. For example,

given a function with extremely expensive function evaluations, the amount of communication

may be negligible relative to the time spent on function evaluation, but waiting for one

straggling processor to complete the current iteration may leave a large number of processors

idle for a long time. Evaluating a PSO variant requires analysis both of the amount of

communication and the interactions that require idle waiting.

127

www.manaraa.com

Iter. 1 and 2 Iter. 3 and 4 Iter. 5 and 6

Figure 7.6: Task dependency diagram for parallel PSO with speculative evaluation.

Appropriate choice of topologies, motion equations, and other techniques can min-

imize the interactions and dependencies between tasks. We consider three approaches to

reducing task interactions that apply in many situations: sparse topologies, subswarms, and

asynchronous parallel PSO.

7.4.1 Sparse Topologies

The swarm topology determines which particles communicate at each iteration. Sparse

topologies require less communication than dense topologies. PSO variants and topologies

should be evaluated by the average number and size of messages per iteration that must

be sent by each particle. For example, in a swarm of n particles, a ring topology requires

2 messages per particle per iteration, while a complete topology requires n/2 messages per

particle per iteration. For standard PSO, the cost of messages is dominated by their number

rather than size. Motion equations or dynamic topologies which require global information

about the swarm introduce task interactions that are equivalent to using a complete topology,

as in Figure 7.1b. Variants of PSO that require centralized coordination, or equivalently,

128

www.manaraa.com

communication between every pair of particles at each iteration, are not generally practical

for parallel computation.

In some cases where heavy interaction shows improved results for serial PSO, it may

be possible to make adaptations to be more appropriate for parallel PSO. For example, for

some functions, serial PSO performs better with a fully connected topology than with a sparse

topology such as a ring. By changing the motion equations to pass along the best value from

any neighbor rather than the best value seen by the particle itself, sparse topologies behave

like dense topologies by spreading information quickly through the swarm. In this case,

communicating with 2 neighbors chosen randomly at each iteration requires only 2 messages

per particle per iteration and gives almost the same performance as the complete topology,

which requires a much higher overhead of n/2 messages per particle per iteration [63].

7.4.2 Subswarms

If evaluation of the objective function is sufficiently inexpensive relative to the costs of

communication, then parallelizing PSO with one particle per processor is pointless. For

example, if function evaluation is faster than sending a network packet, then it is cheaper to

perform all evaluations locally. Parallelization becomes more favorable, even for inexpensive

objective functions, if each processor performs PSO on a semi-independent subswarm.

Most attempts at subswarms for PSO have introduced sophisticated procedures for

migrating particles between subswarms as with islands in genetic algorithms [19, 76], but

these approaches require centralized coordination that increases communication and idleness.

In contrast, the apiary topology [40] achieves similar or better results using the standard

mechanism of swarm topology. Thus, communication follows the same structure as ordinary

parallel PSO, as shown in the task-dependency graph in Figure 7.7. Note that the number of

particles per subswarm and the number of iterations per task determine the task granularity, so

it is straightforward to adapt these parameters according to the relative cost of communication.

If the topology between subswarms requires k messages per subswarm, and if communication

129

www.manaraa.com

Timestep 1Timestep 2Timestep 3Timestep 4

Figure 7.7: Task-dependency graphs for parallel PSO with subswarms The squares represent
tasks, and the diamonds represent function evaluations (with multiple particles and iterations
in each timestep).

between subswarms occurs every m iterations, then the average number of messages per

subswarm per iteration is k/m.

7.4.3 Synchronous and Asynchronous Parallel PSO

Asynchronous parallel PSO [26, 27] is a modification to the standard algorithm which removes

the synchronization point at the end of each iteration. At each iteration of PSO, each particle

must update its neighborhood best. This calculation requires the position and the result

of the function evaluation from each of its neighbors. Synchronous parallel PSO, which

exactly reproduces the computations of serial PSO, requires that computation associated

with a particle wait until the results from the previous iteration are available from all of

its neighbors. However, in asynchronous parallel PSO, particles iterate independently and

communicate asynchronously. If a particle is ready to update its neighborhood best but has

not received information about all of its neighbors, it may use information from the previous

iteration.1 Figure 7.8 shows task dependency diagrams for synchronous and asynchronous

parallel PSO. Asynchronous iteration is particularly beneficial in situations such as a cluster

with heterogeneous processors, an objective function with varying evaluation times, or a

cluster with a large number of processors.

1Asynchronous parallel PSO has been compared to the “asynchronous updates” variant of serial PSO [26].
However, serial PSO with asynchronous updates differs from standard PSO in that particles use newer
information, but asynchronous parallel PSO differs from standard PSO in that particles use older information.

130

www.manaraa.com

(a) Synchronous parallel
PSO

(b) Asynchronous parallel
PSO

Figure 7.8: Task dependency diagrams for synchronous and asynchronous parallel PSO with
heterogeneous processors. In this particular example, asynchronous parallel PSO performs 21
function evaluations in the same time that synchronous parallel PSO performs 15 evaluations.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

σ

T
im

e
p

er
it

er
at

io
n 95th percentile

median

5th percentile

(a) Asynchronous PSO (single task)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

σ

T
im

e
p

er
it

er
at

io
n 95th percentile

median

5th percentile

(b) Synchronous PSO with 50 proces-
sors

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

σ
T

im
e

p
er

it
er

at
io

n 95th percentile
median

5th percentile

(c) Synchronous PSO with 1000 pro-
cessors

Figure 7.9: Probability distributions of the time per iteration (i.e., maximum task time) for
synchronous parallel PSO. Individual task times are i.i.d. with a Gamma distribution of
mean 1 and varying standard deviations.

There are a few slightly different variants of asynchronous parallel PSO. In a partially

asynchronous implementation, particles might wait for some but not all neighbors to complete

before proceeding [51]. In some master-slave implementations, particles never get more

than one iteration ahead of others [26, 27]. However, in a fully distributed implementation,

particles might never wait for information, and one particle could complete many more

iterations than another particle [75].

Synchronous and asynchronous parallel PSO are both valuable approaches. The

benefits of the synchronous PSO include its simplicity, repeatability, and comparability with

131

www.manaraa.com

standard PSO, which may be essential in research applications. If the evaluation time varies

significantly or if processors are heterogeneous, then asynchronous parallel PSO may provide

a significant performance improvement over synchronous parallel PSO [26, 27]. However,

its slower communication can make asynchronous parallel PSO require more iterations to

converge. When evaluation times are consistent and processors are homogeneous, synchronous

and asynchronous parallel PSO are comparable with respect to time [51]. Choosing between

synchronous and asynchronous parallel PSO is a tradeoff between maximizing the number of

function evaluations and having the location of the particles better informed.

If the time for each task is i.i.d. with known distribution, then we can find the distri-

bution of the time per iteration of synchronous parallel PSO. Specifically, let X1, X2, . . . , Xn

be i.i.d. random variables with c.d.f. F (x) and p.d.f. f(x) which represent the number of

seconds required to perform a function evaluation and communicate the results for each of n

concurrent tasks. Then for synchronous parallel PSO, the following iteration can begin after

Y = max1≤i≤nXi seconds. The distribution of Y is given by the c.d.f. G(y) = F n(y) and the

p.d.f. g(y) = nF n−1(y)f(y). Thus, the median time per iteration is F−1(2−
1
n) seconds.

This statistical result shows how the cost of synchronous parallel PSO increases with

the number of processors. We illustrate this with the case where task times are Gamma

distributed with an expected value of 1 second and a standard deviation of σ. Thus, using

the inverse-scale parameterization of the Gamma, Xi ∼ Gamma(1
σ2 ,

1
σ2). This distribution is

shown for varying values of σ in Figure 7.9a. For asynchronous parallel PSO, this represents

the time for each task and has an expected value of 1. For synchronous parallel PSO, the

time required for each task is effectively lengthened by the need to wait for all other tasks

in the same iteration. The distribution over the slowest task time, maxXi, is shown for

50 processors in Figure 7.9b and for 1000 processors in Figure 7.9c with varying values of

σ. Similar plots can be made for any distribution with a known c.d.f. and can even be

approximated from a set of empirical samples.

132

www.manaraa.com

12864 25616 512 768
0

5

10

15

Number of Processors
A

ve
ra

g
e

T
im

e
P

er
It

er
.

Synchronous
Asynchronous

Figure 7.10: Average time per iteration as the number of processors changes. Each func-
tion evaluation takes about 5 seconds with very little variance in task times apart from
communication.

In practice, there may be variance in task times even if function evaluation times are

homogeneous, and task times can be longer for synchronous than for asynchronous parallel

PSO because communication is more expensive when all processors are communicating at the

same time. Figure 7.10 shows the average time per iteration of synchronous and asynchronous

parallel PSO for tasks with very little variance in function evaluation times. At least for this

particular implementation of parallel PSO, the benefit of asynchronous parallel PSO is even

greater than might be expected.

While there are specific situations where it makes sense to use synchronous parallel

PSO, it is important for PSO variants to be compatible with asynchronous iteration. If a

variant requires that all particles iterate in lockstep, then it will always be inefficient on large

clusters and with objective functions with varying evaluation times.

7.5 Conclusion

We have examined PSO in a parallel context, first by considering how its performance

scales independently of communication, and second by considering the task interactions and

communication that it requires. Based on this perspective, we have reviewed approaches

to improve the parallel performance of PSO. Swarms with topologies based on sparse

133

www.manaraa.com

rings, random neighborhoods, and subswarms provide a variety of flexible options for using

communication efficiently.

When comparing PSO variants from a parallel perspective, evaluation must include

two important results:

• First, the performance of PSO per iteration at different numbers of processors indicates

how well the algorithms use function evaluations as the number of processors scales.

• Second, the number and size of messages per particle per iteration indicates the amount

of communication required. Furthermore, any communication beyond that required by

the PSO topology, such as centralized coordination, must be identified.

Furthermore, designers should demonstrate that an algorithm does not introduce any cen-

tralized bottlenecks or incompatibilities with distributed PSO and asynchronous iteration.

All of this information, combined with details about a particular objective function and

computational environment, determine the parallel behavior of PSO variants.

In modern computational environments, parallel computation is central to the evalu-

ation of Particle Swarm Optimization. Results that demonstrate an improvement only for

serial PSO are insufficient.

134

www.manaraa.com

Part III

Inference of Search Directions

The variants of parallel Particle Swarm Optimization discussed in Part II demonstrate

that effective parallel optimization algorithms can use communication sparingly without

requiring centralized coordination. We now consider how the need for interaction can be

further reduced by identifying search directions along which optimization is less interdependent.

Existing serial algorithms use Principal Component Analysis to define a rotation of basis

that reduces the dependence between search directions. If not for the communication and

coordination required by centralized PCA computation, this approach would allow processors

to work on separate search directions efficiently. Chapter 8 proposes a model for decentralized

inference of search directions that removes the need for centralized computation. It also

introduces a new statistical distribution which is used by this model.

135

www.manaraa.com

Chapter 8

Inference of Search Directions for Exploiting Separability in Parallel

Optimization

Many optimization algorithms adapt search directions to exploit latent separability,

but the adaptation techniques require centralized coordination that is inefficient in a parallel

computational environment. We propose a statistical model that can be used on a processor to

adapt its search direction with autonomous separation from other processors’ directions while

preferring promising directions. As part of this model, we introduce a new BinghamConjugate

distribution which is a conjugate prior of the antipodally symmetric Bingham distribution

that is used to model axial data. We describe the model, discuss how to perform inference

efficiently in the model, and demonstrate that it can successfully adapt to narrow in on a

search direction.

8.1 Introduction

For many optimization problems, parallel optimization algorithms are limited by the cost

of communication and coordination between processors. With parallel computation as an

afterthought, optimization algorithms are not designed to address these fundamental concerns.

The property of separability is naturally linked to parallel optimization. An n-

dimensional function is separable if it can be expressed as f(x) =
∑n

i=1 fi(xi). Although

functions do not in general satisfy this definition, it represents an ideal best case. If a function

is separable, then optimization can be decomposed into a set of independent single-dimensional

optimization problems. This might motivate an embarrassingly parallel algorithm that merely

136

www.manaraa.com

performs line search separately along each axis, which would require no communication or

coordination other than assembling the final result. Of course, such an algorithm would rely

on an extreme assumption of separability and would not be generally applicable.

Although objective functions are not separable in general, many serial optimization

algorithms exploit separability, even if it is only present in a more loose sense. Popular

algorithms for continuous optimization, such as Particle Swarm Optimization, Evolution

Strategies, and Differential Evolution, can be interpreted as relying on implicit assumptions of

loose separability. For example, Differential Evolution calculates the differences between points

in a population and adds them to others, which assumes that independent improvements in

two different directions can often be successfully combined. The time-honored Coordinate

Descent algorithm, which has been parallelized [77], is based on a more explicit assumption

of separability. This algorithm cycles through the directions of a fixed basis, performing a

line search along each. Adaptive Coordinate Descent uses Principal Component Analysis to

dynamically determine a rotated basis for coordinate descent [78]. Due to this dynamically

rotated basis, Adaptive Coordinate Descent performs well for functions like the well-known

Rosenbrock function, which has a parabola-shaped valley that is particularly challenging for

coordinate descent [79]. However, parallelizations of these algorithms based on PCA would

require communication of all sampled points from all processors every time a new set of

directions is selected.

We address the problem of parallel adaptation by mathematically modeling autonomous

separation. Specifically, we present a statistical model for inferring search directions on a

single processor, given the current directions of other processors and a noisy test that

returns “success” for promising directions that indicate loose separability. As an example,

a test could indicate whether a pair of function evaluations along a given direction show

an improvement consistent with separability in that direction (i.e., f(x1 + v) < f(x2 + v)

if f(x1 + v) < f(x1) and f(x1) < f(x2)). This approach allows new directions to be

chosen frequently, with directions communicated only intermittently. Furthermore, it does

137

www.manaraa.com

not require all sampled points to be processed in a centralized manner. The model avoids

overlap with directions pursued by other processors and refines its predictions to narrow

in on directions where the test succeeds. Given the current directions of other processors,

a BinghamConjugate distribution defines the prior probabilities of directions. A series of

Bingham samples using this prior distribution gives a variety of directions to try, and the

successful samples are used to update the posterior BinghamConjugate distribution. We note

that a set of BinghamConjugate distributions jointly defines a noisy linear transformation

that can represent rotation, reflection, and shearing of the basis. With a prior distribution

centered on a direction that is orthogonal to the modes of the other distributions, this model

addresses the concern of a single processor adapting its direction with minimal coordination

from others.

The remainder of the paper proceeds as follows. Section 8.2 discusses prerequisite

statistical distributions by reviewing the Bingham distribution, introducing the new Bing-

hamConjugate distribution, and proposing an MCMC algorithm for sampling from the

BinghamConjugate distribution using Gibbs sampling on variables induced by eigendecompo-

sition. Section 8.3 defines the statistical model for adapting search directions, which uses

the Bingham and BinghamConjugate distributions. Section 8.4 demonstrates that the model

can successfully narrow in on a direction. Finally, Section 8.5 concludes and discusses future

work.

8.2 Bingham and BinghamConjugate Distributions

Directional distributions are probability distributions whose support is the surface of a

hypersphere [80]. Antipodal symmetry, where a density f(·) satisfies f(−x) = f(x), is useful

for modeling directions that represent bidirectional lines rather than unidirectional rays. The

Bingham distribution is an antipodally symmetric directional distribution. It is useful for

modeling axial directional data, such as the orientation of calcite grains in limestone [81].

A special case of the Bingham distribution has been used for analyzing two-dimensional

138

www.manaraa.com

landmark data [82]. Efficient sampling algorithms are available for the distribution [83, 84],

and it is possible to perform Bayesian inference on the eigenvalues of the parameter of the

Bingham distribution [85]. However, the lack of a conjugate prior has limited the use of the

Bingham distribution in Bayesian analysis.

The probability density function of the Bingham distribution is1:

fx(x) = [B(A)]−1 exp(−xTAx), x ∈ Sp−1 (8.1)

where A is a symmetric p× p matrix, Sp−1 is the unit sphere in Rp, and:

B(A) =

∫
exp(−xTAx) dSp−1(x). (8.2)

This distribution is equivalent to a centered multivariate normal constrained to the surface

of the unit sphere. The Bingham distribution is a member of the exponential family, and

its normalizing constant, while not expressible in closed form, is a confluent hypergeometric

function of matrix argument with an available saddlepoint estimation algorithm [86]. The

appendix in Section 8.7 reviews and proves known mathematical properties related to the

Bingham distribution that are used throughout this section.

A few other distributions related to the Bingham distribution deserve mention. The

Projected Normal distribution [87], is a multivariate normal projected to the surface of the

unit sphere. This distribution has not been developed in its antipodally symmetric form, and

its density function is intractable. The Complex Bingham distribution [82] can be considered a

special case of the Bingham distribution where eigenvalues of the parameter matrix have even

multiplicity. In this special case, simulation reduces to the truncated multivariate exponential

distribution [88]. The normalizing constant for the Complex Bingham distribution can be

derived in closed form, and a simple formula is available if no two eigenvalues are equal [82].

Unfortunately, these results are not applicable to the Bingham distribution in general.

1We prefer this more convenient form [84, 86] to the original fx(x) = [B(−A)]−1 exp(xTAx).

139

www.manaraa.com

We define a new distribution which we refer to as the Bingham conjugate distribution.

If A ∼ BinghamConjugate(V, n), then the probability density of A is the function:

fA(A) = C(V, n)−1[B(A)]−n etr(−VA), A pos. def. (8.3)

where V is a p × p positive definite matrix, n < tr(V), and C(V, n) is the normalizing

constant.

Markov Chain Monte Carlo (MCMC) sampling for matrix-valued distributions is not

straightforward. One inefficient algorithm is Independent Metropolis–Hastings sampling using

a Wishart proposal distribution, but this has an extremely low rate of acceptance. In Indepen-

dent Metropolis–Hastings, each candidate sample is distributed independently of the previous

sample, rather than centered on the previous sample as in a typical Metropolis–Hastings

algorithm [89, p. 276]. In this case, the proposal value is a Wishart(2V−1, p+ 1) sample[90],

and the acceptance ratio is (B(A) − B(Ã))n. For a 10-dimensional BinghamConjugate

distribution, the näıve sampler accepted only 15 out of 4.6× 109 proposed values after an

initial burn, and it appears to converge to an acceptance rate no greater than 10−9. Although

this algorithm is inefficient, we describe a MCMC sampling algorithm that is efficient.

Section 8.2.1 describes properties of this new distribution and shows that it is a

conjugate prior of the Bingham distribution. Section 8.2.2 presents an MCMC sampler for

this matrix-values distribution. Additionally, the appendix in Section 8.7 includes a proof of

results presented in this paper, and appendix in Section 8.8 briefly reviews existing algorithms

which are required for implementing the sampler.

8.2.1 Bingham Conjugate Distribution

We establish that Equation 8.3 is a valid probability density function:

140

www.manaraa.com

Theorem 1. The integral of the unnormalized probability density function of the Bingham

conjugate distribution, ∫
A>0

[B(A)]−n etr(−VA)dA, (8.4)

converges if V is positive definite and n < tr(V).

The proof of this theorem is in the appendix in Section 8.7.

The parameter of the Bingham conjugate distribution is related to a sufficient statistic

of the Bingham distribution. The probability density function of a matrix X of independent

Bingham-distributed samples can be rewritten as:

fX(X) =
n∏
i=1

[B(A)]−1 exp
(
−xT

i Axi
)

= [B(A)]−n etr

(
−

n∑
i=1

xix
T
i A

)

= [B(A)]−n etr
(
−XXTA

)
,

(8.5)

which only depends on the data through the function XXT, so by the Fisher–Neyman

factorization theorem, XXT is a sufficient statistic for A.

The new distribution is a conjugate prior of the Bingham distribution. Suppose A ∼

BinghamConjugate(V, n), and A is the prior distribution of x ∼ Bingham(A). According

to Bayes’ theorem, the posterior density is:

fA|x(A | x) ∝ [B(A)]−(n+1) etr(−(V + xxT)A). (8.6)

Furthermore, tr(V + xxT) = tr(V) + ‖x‖ = tr(V) + 1 > n + 1. Thus, A | x ∼

BinghamConjugate(V + xxT, n + 1). With m observations represented as column vec-

tors of a matrix X, the posterior distribution is BinghamConjugate(V + XXT, n+m). The

posterior update increments the parameter n by the number of observations and adds XXT,

the sufficient statistic of the Bingham distribution, to the parameter V.

141

www.manaraa.com

One way to construct the parameter V is as a scatter matrix from a collection

{y1, . . . ,yk} of k pseudo-samples of maximum rank on the unit sphere. In this case, tr(V) =∑k
i=1 tr(yiy

T
i) =

∑k
i=1 ‖yi‖ = k, so the parameter n must be less than the number k of

pseudo-samples.

8.2.2 Sampling Algorithm

We sample from the Bingham conjugate distribution using Gibbs sampling on variables Q

and Λ induced by the eigendecomposition of the random matrix: A = QΛQT. This change

of variables has Jacobian
∏

i<j |λi − λj| [91], and because B(A) = B(Λ), we may also write

B as B(λ1, . . . , λp). With this change of variables, the joint density of Λ and Q is:

fQ,Λ (Q, Λ) ∝ [B(Λ)]−n etr
[
−V

(
QΛQT

)]∏
j<k

|λj − λk|

= [B(Λ)]−n etr
[
−
(
QTVQ

)
Λ
]∏
j<k

|λj − λk|

= [B(Λ)]−n exp

[
−

p∑
i=1

(
QTVQ

)
ii
λi

]∏
j<k

|λj − λk|

because Λi,j = 0 for i and j where i 6= j. Thus:

fQ,Λ (Q, Λ) ∝ [B(Λ)]−n exp

(
−

p∑
i=1

qT
i Vqiλi

)∏
j<k

|λj − λk|

= [B(Λ)]−n
[

p∏
i=1

exp
(
−
(
qT
i Vqi

)
λi
)]∏

j<k

|λj − λk| .
(8.7)

The variables Λ and Q are both sampled with Gibbs sampling, which we outline

here and then describe in more detail in Sections 8.2.2.1 and 8.2.2.2. First, each eigenvalue

λi is sampled as a constrained exponential distribution by slice sampling with auxiliary

variables U and Vi,j . Alternatively, it may be possible to sample from the eigenvalues using a

Metropolis–Hastings approach [85], but this would likely introduce greater autocorrelation

than the presented direct sampling approach. Second, the matrix of eigenvectors Q is sampled

142

www.manaraa.com

by rotating pairs of vectors with Metropolis–Hastings. The proposed angle of rotation is

drawn from a normal-variate candidate distribution. The eigenvalues and eigenvectors are

initialized by setting QΛQT = V−1.

8.2.2.1 Sampling the Eigenvalues

The eigenvalues are sampled as constrained exponential random variables with the introduction

of auxiliary variables. We introduce the following auxiliary variables for slice sampling [92] of

the density in equation (8.7):

U ∼ U
(
0, [B(Λ)]−n

)
(8.8)

Vj,k = Vk,j ∼ U (0, |λj − λk|) . (8.9)

Sampling of U and Vj,k from their full conditionals is straightforward from their definitions

(note that in practice, it is numerically necessary to sample lnU directly in log-space:

lnU ∼ −Y − n lnB(Λ) where Y ∼ Exponential(1)). The full conditional of λi given the

auxiliary variables is Exponential(qT
i Vqi) constrained such that the new bounds imposed

by λi on U and Vj,k are consistent with their current values u and vj,k. This constraint is

equivalent to the set:

Si(u, (vi,j)j) = {λi;B(λi, (λj)j 6=i)
−n ≥ u} ∩

⋂
j 6=i

{λi; |λi − λj| ≥ vi,j}. (8.10)

We define the function h(λi) = B(λi, (λj)j 6=i) − u−1/n which is monotone decreasing and

convex (by Theorem 2 in the appendix in Section 8.7) and whose root is a lower bound on λi.

If h(0) < 0, then the root of h is less than 0, and thus u does not constrain λi. Otherwise,

the root r of h(0) can be found by a root finding algorithm such as Brent’s method. To find a

suitable bracket for a root finder, note that h(0) > 0 and h(2kλt−1,i) < 0 for some reasonably

143

www.manaraa.com

small integer k. Thus, the set constraining λi simplifies to an intersection of intervals:

Si(u, (vi,j)j) = (max(0, r), ∞) ∩
⋂
j 6=i

(λj − vi,j, λj + vi,j), (8.11)

which can be converted to a disjoint intersection by sorting the list of intervals by their lower

bounds and merging overlapping intervals, which is then trivially converted to a disjoint

union of intervals. To sample from the exponential distribution constrained to the disjoint

union of intervals
⋃
k(ak, bk), first sample j proportional to the probability mass of each

interval: exp[−(qT
i Vqi)ak]− exp[−(qT

i Vqi)bk] (after normalization). Then, if bj =∞ sample

from the left-truncated exponential distribution with:

λi = aj − (qT
i Vqi)

−1 ln[U(0, 1)], (8.12)

or if bi <∞, sample from the left- and right-truncated exponential distribution with:

λi = aj − (qT
i Vqi)

−1 ln
[
U
(
e−q

T
iVqi(bj−aj), 1

)]
. (8.13)

8.2.2.2 Sampling the Eigenvectors

The eigenvectors are constrained to be an orthogonal set, so it is impossible to sample from

a single eigenvector independent of the others. However, it is possible to jointly sample

from a pair of eigenvectors which span a plane that is orthogonal to all of the other fixed

eigenvectors. Rotating these two vectors within this plane preserves orthogonality of the

entire set of eigenvectors. Sampling the entire set of eigenvectors uses a multi-stage Gibbs

sampler that iteratively rotates each of the p(p− 1)/2 pairs of eigenvectors.

Each pair of eigenvectors is rotated by a Metropolis–Hastings sampler using a normal-

variate proposal for the angle of rotation. Suppose Q is the current matrix of eigenvectors

and that the candidate eigenvalue matrix Q̃ is equivalent to Q but with columns i and j

rotated within their span by an angle of θ. Specifically, rotating the vectors qi and qj gives

144

www.manaraa.com

the new vectors:

q̃i = (cos θ)qi + (sin θ)qj

q̃j = −(sin θ)qi + (cos θ)qj.

From the joint density of Λ and Q in equation (8.7) and because the proposal distribution is

symmetric, the acceptance ratio for Q̃ is:

fQ,Λ

(
Q̃, Λ

)
fQ,Λ(Q, Λ)

= exp

(∑
k

λkq
T
kVqk −

∑
k

λkq̃
T
kVq̃k

)

= exp
(
λi
(
qT
i Vqi − q̃T

i Vq̃i
)

+ λj
(
qT
j Vqj − q̃T

j Vq̃j
))
.

(8.14)

In terms of θ instead of q̃i and q̃j, the acceptance ratio is:

exp((λi − λj)(sin2 θ)qT
i Vqi + (λj − λi)(sin 2θ)qT

i Vqj + (λj − λi)(sin2 θ)qT
j Vqj). (8.15)

In practice, manually tuning the proposal distribution is undesirable, particularly for

applications with greater than three dimensions. We develop a rule of thumb that serves as

an acceptable standard deviation of the candidate normal distribution. Note that qT
i Vqi lies

between the minimum and maximum eigenvalues of V, and if qi is the ith eigenvector of V,

then qT
i Vqi is equal to the ith eigenvalue of V. Thus, we set the standard deviation of the

candidate distribution for the rotation between the ith and jth eigenvectors of Q to:

σi,j = |(λi − λj)(li − lj)|−1/2 (8.16)

where li and lj are the ith and jth eigenvalues of V respectively. While this rule of thumb

seems to work well in practice, we expect that manual tuning or some other formula may

work better in specific cases.

145

www.manaraa.com

Alternatively, the eigenvectors can be sampled with Independent Metropolis–Hastings,

which results in a much lower acceptance ratio and higher autocorrelation, but which does

not involve tuning parameters. The marginal distribution of the eigenvectors of a Wishart

distribution is intractable, so this requires the introduction of an auxiliary variable M , which

for convenience has density:

fM (M) =


c−1
M

∏
i<j |µi − µj| if 0 < µi < kM ,

0 otherwise.

where kM is an arbitrary constant and cM =
∫

0<µi<kM

∏
i

∏i−1
j=1 |µi − µj|dµi. Suppose the

current sample of A is At−1 = Qt−1Λt−1Q
T
t−1 and the current sample of M is Mt−1. Set

Q̃ and M̃ to the eigendecomposition of a sample Q̃M̃Q̃T from the Wishart(2V−1, p + 1)

distribution [90]. After simplification, the Metropolis–Hastings acceptance ratio is:


etr
[
V
(
Q̃
(
M̃−Λt−1

)
Q̃T −Qt−1 (Mt−1 −Λt−1) QT

t−1

)]
if all µ̃i < kM ,

0 otherwise.

(8.17)

This algorithm works, but in most situations, sampling by pairwise rotation of eigenvectors

results in significantly lower auto-correlation (see Section 8.4).

8.3 Model

We propose a model by which a processor can autonomously adapt its search direction while

maintaining separation from other processors’ directions. Adaptation is guided by a given

test for indicating whether a direction is promising. The test yields either true or false for a

given direction and is not assumed to consistently give the same result for any specific input.

At the heart of the model are a BinghamConjugate-distributed random matrix A and

a Bingham-distributed random vector y. The prior parameters of A favor directions clustered

around the direction that is orthogonal to the directions of other processors. Because the

146

www.manaraa.com

A

µi κ n

zj y

D − 1

N

Figure 8.1: Conditional independence assumptions of the model.

matrix-valued parameter is most naturally interpreted as a scatter matrix, we use samples

from a Von Mises Fisher distribution to generate it. The posterior parameters of A are

updated in response to observations of directions for which the test returns success. Samples

from y predict future promising values according to these posterior parameters.

Figure 8.1 illustrates the conditional independence assumptions of the model. The

vectors µ1, . . . , µp−1, where p is the number of dimensions, represent the set of other

processors’ directions, which are to be avoided. Let µp be one of the two antipodally

symmetric orthonormal vectors that are orthogonal to µ1, . . . , µp−1. This vector µp, along

with the concentration parameter κ, defines the distribution of an auxiliary random variable

v. The expected scatter matrix of v and the degrees of freedom parameter n determine the

parameters of the prior distribution of the BinghamConjugate random matrix A. The model

is defined by the random variables with the following distributions:

v ∼ VonMisesFisher(µp, κ) (8.18)

A ∼ BinghamConjugate
(
nE

[
vvT

]
, n
)

(8.19)

zj ∼ Bingham(A) (8.20)

y ∼ Bingham(A). (8.21)

147

www.manaraa.com

In intuitive terms, µp and −µp are the modes of y, n is the number of pseudo-samples

represented in the prior distribution (raising n increases the confidence of the prior), and

κ is the dispersion of prior pseudo-samples. The set of observations {zj}N represent suc-

cessful directions from past exploration and reinforce the posterior distribution, which has

distribution:

A ∼ BinghamConjugate

(
nE[vvT] +

N∑
i=1

zjz
T
j , n+N

)
. (8.22)

The posterior predictive y is a random variable for a new direction with probabilities

determined by this posterior distribution. Samples from y are inclined to be orthogonal from

other processors’ directions (due to the prior) and are attracted to the previous successful

observations. Thus, samples from y are promising directions which can be used for future

exploration.

Inference in this model is straightforward and efficient. Given other processors’

directions µ1, . . . , µp−1, the parameter µp is computed by applying the Gram-Schmidt

process to these vectors along with an arbitrary random vector. For e1 = [10 . . . 0]T, the

value E
[
e1e

T
1

]
can be precomputed for a given value of κ by averaging the scatter matrix

from a large number of samples from the distribution VonMisesFisher(e1, κ). Then the term

E
[
vvT

]
is a simple rotation of E

[
e1e

T
1

]
. The posterior distribution is conveniently updated

by observations with the closed-form update in Equation 8.22. Finally, the distribution of y

is efficiently sampled with the BinghamSampler algorithm in Section 8.8.

8.4 Results

We consider first the performance of the BinghamConjugate sampler and then the behavior

of the full model.

Figure 8.2 shows the autocorrelation of the first two eigenvalues of a three-dimensional

BinghamConjugate distribution using slice sampling for the eigenvalues and Metropolis–

148

www.manaraa.com

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Samples

A
u

to
co

rr
el

at
io

n

(a) First Eigenvalue

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Samples

A
u

to
co

rr
el

at
io

n

(b) Second Eigenvalue

Figure 8.2: Autocorrelation plots for the first two eigenvalues of samples from the Bingham-
Conjugate distribution.

Hastings pairwise rotations for the eigenvectors. The parameter V is the scatter matrix of 30

samples from a von Mises–Fisher distribution with κ = 10, and the parameter n = 33. The

autocorrelation of the first eigenvalue is very low by 500 samples and is 0 by 1000 samples.

The autocorrelation of the second eigenvalue (and the third eigenvalue) drops off more quickly

and is 0 by 250 samples. For the same distribution, using Independent Metropolis–Hastings

with for the eigenvectors with an auxiliary variable, the autocorrelation is worse by more

than an order of magnitude.

In evaluating the behavior of this model, the test for indicating whether a new direction

is promising is defined by a function of the angle between the new direction and a fixed

target direction. If the new direction is close to the target direction, then the test returns

“success” with high probability, and if the new direction is far from the target direction,

then the test returns “failure” with high probability. Specifically, we fix µp, choose a target

direction τ a fixed angle away, and iteratively sample from y, computing the angle between

the sampled vector y and τ . The probability of the test returning success is given by the

following Gaussian function of the angle: exp (−Cα2), where α = cos−1
(
|yTµp|

)
is the angle

between the directions y and µp. This function assigns probability 1 at the target direction

and assigns probability approaching 0 as α increases. This function is shown in Figure 8.3 for

149

www.manaraa.com

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Angle (Degrees)

P
ro

b
a
b

il
it

y

C=10
C=20

Figure 8.3: Function for determining the probability of success from the angle |yTµp| with
concentration parameters of 10 and 20.

values C = 10 and C = 20 of the concentration parameter. If the sample is labeled a success,

then it is added as the value of the next zj.

We demonstrate results with the target direction τ an angle of 15 degrees from µp

and with parameters κ = 6 and n = p, which is the loosest prior value of n. We first

consider p = 3, the number of dimensions for which geometry most closely aligns with

intuition. We next consider p = 5 for two different values of C to demonstrate the effect of

the concentration parameter. Finally, we consider p = 10 to show the behavior for a higher

number of dimensions. Note that the value of the concentration parameter is not directly

comparable between different values of p.

Figure 8.4 shows the average angle of samples from the posterior predictive distribution

of y at each iteration with p = 3 and C = 20. This value of C corresponds with the function

shown in Figure 8.3 that selects the probability of a sample being labeled a success. Directions

within about 10 degrees from the target have a greater than 50% probability, while directions

further away have a less than 50% probability. At iteration 300, the samples from the

posterior predictive distribution have a mean angle from the target direction of less than 12

degrees.

Figure 8.5 shows results with p = 5. As the number of dimensions increases, the

average angle between a point sampled from the prior and the target direction increases (in a

150

www.manaraa.com

0 50 100 150 200 250 300
0

10

20

30

40

Iteration

A
ve

ra
ge

A
n

gl
e

Figure 8.4: Average angle of predicted values of y when p = 3 and C = 20. The angle test
returns a probability of success of 50% at around 10 degrees from the target direction.

0 100 200 300 400 500
0

10

20

30

40

50

Iteration

A
ve

ra
ge

A
n

gl
e

(a) C = 20.

0 100 200 300 400 500
0

10

20

30

40

50

Iteration

A
ve

ra
ge

A
n

gl
e

(b) C = 15.

Figure 8.5: Average angle of predicted values of y when p = 5 for different values of C.
The angle test returns a probability of success of 50% at around 15 degrees from the target
direction.

sense, points are further apart in higher dimensional space). In Figure 8.5a, the concentration

parameter is C = 20. In this case, the success rate is only 10%, so convergence is slower than

in the 3-dimensional case. In Figure 8.5b, the concentration parameter is set to a lower value

of C = 15, so the success rate is 15% and the convergence is reasonable.

Figure 8.6 shows results with p = 10 and C = 10, where the success rate is 15%.

Directions within about 15 degrees from the target have a greater than 50% probability of

being labeled successes, while directions further away have a less than 50% probability. In

the 10-dimensional case, the model converges to a posterior predictive distribution that is

151

www.manaraa.com

0 200 400 600 800 1,000 1,200 1,400
0

10

20

30

40

50

60

Iteration

A
ve

ra
ge

A
n

gl
e

Figure 8.6: Average angle of predicted values of y when p = 10 and C = 10. The angle test
returns a probability of success of 50% at around 15 degrees from the target direction.

less tight than in the 3-dimensional case, but it still does a reasonable job of finding the

target search direction. In particular, note that the net improvement from iteration 0 to

iteration 1,500 is 33 degrees, which is greater than the net improvement of 27 degrees in the

3-dimensional case (shown in Figure 8.4).

8.5 Conclusion

We have presented a new distribution that is a conjugate prior of the Bingham distribution.

We have proved that the Bingham conjugate distribution has finite integral and is therefore a

valid distribution. We have also detailed a practical Gibbs sampling algorithm for sampling

from the eigenvalues and eigenvectors of this distribution and have demonstrated that this

algorithm has manageably low autocorrelation. The Bingham conjugate distribution allows

for closed-form inference of the Bingham distribution and thus facilitates Bayesian analysis

of antipodally symmetric directional data.

We have presented a model based on the conjugate pair of the BinghamConjugate

and Bingham distributions which addresses the need in parallel optimization for adapting a

processor’s search direction. The model constrains directions to ensure separation from other

processors’ directions, and it focuses on promising directions given a test, such as one that

identifies directions that can exploit latent separability. Unlike techniques based on Principal

152

www.manaraa.com

Component Analysis which require all sampled points to be communicated for centralized

processing, this approach allows for inference to be performed locally. This inference requires

only the mode of the distribution of directions of each processor (which need not be updated

frequently) and sufficient evaluated points from other processors for performing the test. We

have demonstrated that the model can successfully perform inference on search directions,

and we have discussed techniques for performing this inference efficiently.

This work raises many interesting research questions. First, we anticipate that there

may be many possible tests for identifying promising directions and detecting separability.

For example, a test could take a point z and perform line search from this point along a

direction y, returning true if an improved point is found. Another test could take two given

points x1 and x2 where f(x1) < f(x2), perform line search from point x1 along direction y to

the point (x1 + dy), and return true if (f(x1 + dy) < f(x1)) = (f(x2 + dy) < f(x2)). Second,

the model detailed in Section 8.3 may be further refined. For example, the model may be

expanded to incorporate negative test results or adapted for use with other types of tests

that may not be binary. We note that there is an efficient algorithm, BinghamConstant in

Section 8.8, for estimating the normalizing constant of the Bingham distribution, which would

facilitate inference and sampling in mixture models involving the BinghamConjugate and

Bingham distributions. Third, we foresee a wide variety of parallel optimization algorithms

based on this model and additional derivative models. These algorithms may vary in what

type of line search is performed, which type of test is used for identifying successful directions,

how often new directions are communicated to other processors, how new priors are chosen

after receiving updated directions from other processors, which points and evaluations are

shared, and how old observations are pruned. Finally, all of these factors when applied to a

set of interacting processors may bring about interesting emergent behaviors that are worthy

of study.

153

www.manaraa.com

8.6 Appendix: Properties of the Bingham Distribution

Rotating a Bingham random variable is equivalent to rotating its parameter matrix as in, for

example, eigendecomposition. Suppose that x ∼ Bingham(A) and that Q is an orthogonal

matrix. Then for all x, ‖Qx‖ = ‖QTx‖ = ‖x‖, so x ∈ Sp−1 if and only if Qx ∈ Sp−1. The

Jacobian of the linear transformation x = QTy is simply | det(QT)| = 1, so the density of

y = Qx is:

f(y) ∝ exp
(
−
(
QTy

)T
A
(
QTy

))
, y ∈ Sp−1

= exp
(
−yT

(
QAQT

)
y
)
.

Therefore, if x ∼ Bingham(A), then Qx ∼ Bingham(QAQT). As a consequence, we can

assume without loss of generality that the parameter matrix is a diagonal matrix of eigenvalues.

The density of the Bingham distribution is invariant under addition of the eigenvalues

of the parameter matrix by a constant. Suppose, without loss of generality, that A is a

diagonal matrix of eigenvalues. Then the density of x ∼ Bingham(A + kI) is:

f(x) ∝ exp
(
−xT (A− kI) x

)
, x ∈ Sp−1

= exp
(
−xTAx− kxTx

)
= exp

(
−xTAx− k

)
because xTx = ‖x‖2 = 1. Therefore, x ∼ Bingham(A). As a consequence, we can assume

without loss of generality that the smallest eigenvalue of A is 0, and thus A is a positive

semi-definite matrix.

The Bingham distribution is equivalent to a centered multivariate normal constrained

to the surface of the unit sphere. To show this, first let y ∼ N
(
0,A−1

)
, and let x ∼

154

www.manaraa.com

Bingham(1
2
A). Then y and x have densities:

fy(y) = (2π)−p/2 det(A)1/2 exp

(
−1

2
yTAy

)
fx(x) ∝ exp

(
−xT

(
1

2
A

)
x

)
, x ∈ Sp−1.

Next, find the distribution of y conditioned on ‖y‖ = 1 by restricting it to the sphere Sp−1

and renormalizing:

fy|‖y‖=1(y) =
fy(y)∫

fy(x)dSp−1(x)
, y ∈ Sp−1

∝ exp

(
−yT

(
1

2
A

)
y

)
, y ∈ Sp−1

∝ fx(y)

where Sp−1 is the unit sphere in Rp. Since proportional probability densities are equal,

fy|‖y‖=1 = fx. Therefore, the distribution of y | ‖y‖ = 1 has the same density as the

Bingham(1
2
A) distribution.

8.7 Appendix: Proofs

In this appendix, we provide a series of proofs culminating in a proof of Theorem 1. These

proofs demonstrate that the BinghamConjugate density has a finite integral and thus that

the BinghamConjugate distribution is valid.

Theorem 2. The Bingham normalizing constant, B(Λ), is a decreasing convex function of

the eigenvalues.

Proof. The partial derivatives of the Bingham normalizing constant are (using the Leibniz

integration rule):

∂

∂λi
B(Λ) =

∂

∂λi

∫
exp

(
−

p∑
i=1

x2
iλi

)
dSp−1(x)

155

www.manaraa.com

=

∫
∂

∂λi
exp

(
−

p∑
i=1

x2
iλi

)
dSp−1(x)

= −
∫
x2
i exp

(
−

p∑
i=1

x2
iλi

)
dSp−1(x)

< 0.

Therefore, B(Λ) is decreasing.

Likewise, the Hessian matrix of the Bingham normalizing constant has entries:

∂2

∂λi∂λj
B(Λ) =

∫
∂2

∂λi∂λj
exp

(
−

p∑
i=1

x2
iλi

)
dSp−1(x)

=

∫
x2
ix

2
j exp

(
−

p∑
i=1

x2
iλi

)
dSp−1(x)

= E
[
X2
iX

2
j

]
= cov

(
X2
i , X

2
j

)
,

where Xi is the ith element of the random vector x ∼ Bingham(Λ). The Hessian matrix of

B(Λ) is a covariance matrix, so it is positive semi-definite. Therefore, B(Λ) is convex.

Lemma 1. B(Λ) > 2−1π−pBc(Λ), where B is the normalizing constant of the Bingham

distribution, and Bc is the normalizing constant of the complex Bingham distribution with

eigenvalues Λ.

Proof. The change of variables from x ∈ Sp−1, a vector on the unit sphere, to s ∈ ∆p−1, a

vector on the unit simplex, is given by the transformation si = x2
i and has Jacobian

∏p
i=1 s

−1/2
i .

Thus, the Bingham constant can be rewritten as:

B(Λ) =

∫
∆p−1

exp

(
−

p∑
i=1

λisi

)
p∏
i=1

s
−1/2
i ds1, . . . , dsk−1. (8.23)

156

www.manaraa.com

The term
∏p

i=1 s
−1/2
i > 1 because 0 < si < 1. Therefore, this integral is strictly greater than:

∫
∆p−1

exp

(
−

p∑
i=1

λisi

)
ds1, . . . , dsk−1. (8.24)

This integral is also obtained from the complex Bingham constant by transformation from

the complex unit sphere to the unit simplex and polar coordinates (noting the difference in

sign convention) [82]. Specifically, the integral in Equation 8.24 is equal to 2−1π−pBc(Λ).

The complex Bingham distribution normalizing constant is a closed form expression

which, under the sign convention we use, is [82]:

Bc(Λ) = 2πp
p∑
i=1

(
e−λi

∏
j 6=i

(λj − λi)−1

)
. (8.25)

Lemma 2. For any p ∈ N, there is a number a such that the p-dimensional Bingham function

is bounded below by ag(Λ), where g(Λ) = e−λi?
∏p

j=1(λj − λi? + 1)−1, Λ is a diagonal matrix

of eigenvalues λi > 0, and i? = arg mini λi. In other words,

Bc(Λ) > ag(Λ).

Proof. The ratio

Bc(Λ)

g(Λ)
= 2πp

p∑
i=1

(
e−(λi−λi?)(λi − λi? + 1)

∏
j 6=i

λj − λi? + 1

λj − λi

)

is continuous and positive because Bc and g are both continuous and positive. The limit of

each term for i 6= i? in the summation is:

lim
λi→∞

e−(λi−λi?)(λi − λi? + 1)
∏
j 6=i

λj − λi? + 1

λj − λi
= 0.

157

www.manaraa.com

If any eigenvalues are equal to each other, their terms combine by l’Hôpital’s rule on

(e−λi − e−λj)/(λj − λi), and the limit of the terms as the variables jointly approach infinity

remains 0. The limit of the ratio as all of the eigenvalues go to infinity is:

lim
λi?→∞

Bc(Λ)

g(Λ)
≥ 2πp.

Let ε be a number such that 0 < ε < 2πp. Then there is a number b such that Bc(Λ)/g(Λ) >

2πp−ε if all λi > b. By the extreme value theorem, Bc(Λ)/g(Λ) has a minimum value d in the

p-dimensional interval [0, b]p. Since Bc and g are both positive, d > 0. Let a = min(d, 2πp−ε).

Then:

Bc(Λ)

ag(Λ)
> 1.

Lemma 3. The Bingham normalizing constant of a positive definite matrix A is bounded by:

B(A) <
1

2
π−p/2Γ(p/2).

Proof. Since A is positive definite, xTAx > 0 and:

B(A) =

∫
exp

(
−xTAx

)
dSp−1(x)

<

∫
e0 dSp−1(x)

=
1

2
π−p/2Γ(p/2). (8.26)

Proof of Theorem 1. We demonstrate that Equation 8.4 is a convergent integral.

Case 1: n > 0.

158

www.manaraa.com

Suppose V is a p×p positive definite matrix with tr(V) > n. For any fixed p×p matrix

A with eigenvalues Λ, let i? = mini λi. Let Bc(A) be the complex Bingham normalizing

constant function. By the inequalities of Lemmas 1 and 2,

∫
A>0

[B(A)]−n etr(−VA)dA < an
∫
A>0

enλi?

(
p∏
j=1

(λj − λi? + 1)n

)
etr(−VA)dA.

By the eigenvalue decomposition change of variables, the right-hand side is equal to:

an
∫
A>0

enλi? etr(−VQΛQT)

(
p∏
j=1

(λj − λi? + 1)n

)∏
j<i

|λi − λj|dQ
∏

dλi,

which is less than:

an
∫
A>0

enλi? etr(−VQΛQT)

(
p∏
j=1

(λj − λi? + 1)n+p−1

)
dQ
∏

dλi

because |λi − λj| ≤ max(λi, λj)− λi? < (λi − λi? + 1)(λj − λi? + 1), and each λi occurs in

p− 1 such comparisons. Rearranging terms, the above expression is equal to:

an
∫
A>0

exp

(
−(tr(V)− n)λi? −

∑
j 6=i?

(
qT
j Vqj

)
(λj − λi?)

)
(

p∏
j=1

(λj − λi? + 1)n+p−1

)
dQ
∏

dλi. (8.27)

The terms for each eigenvalue other than the smallest can be expressed as an integral:

∫ ∞
λi?

(λj − λi? + 1)n+p−1 exp
[
−
(
qT
j Vqj

)
(λj − λi?)

]
dλj

= exp
(
qT
j Vqj

) ∫ ∞
1

λn+p−1
j exp

[
−
(
qT
j Vqj

)
λj
]
dλj

< exp
(
qT
j Vqj

) ∫ ∞
0

λn+p−1
j exp

[
−
(
qT
j Vqj

)
λj
]
dλj

= Γ(n+ p)
(
qT
j Vqj

)−(n+p)
exp

(
qT
j Vqj

)
. (8.28)

159

www.manaraa.com

Combining this back into Equation 8.27 shows that the Bingham constant is less than:

an
∫ ∫ ∞

0

exp [−(tr(V)− n)λi?] dλi?
∏
j 6=i?

[
Γ(n+ p)

(
qT
j Vqj

)−(n+p)
exp

(
qT
j Vqj

)]
dQ

= anΓ(n+ p)p−1(tr(V)− n)−1

∫ (
qT
j Vqj

)−(n+p)(p−1)
exp

(
qT
j Vqj

)
dQ

= anΓ(n+ p)p−1(tr(V)− n)−1

∫
η−(n+p)(p−1)eηdQ

= anΓ(n+ p)p−1(tr(V)− n)−1η−(n+p)(p−1)eη, (8.29)

where η is the maximum eigenvalue of V.

Case 2: n ≤ 0. By Lemma 3,

∫
A>0

etr(−VA)[B(A)]−ndA < 2nπpn/2Γ(p/2)−n
∫
A>0

etr(−VA)dA. (8.30)

We evaluate the integral
∫
A>0

etr(−VA)dA using two changes of variables [93] related to the

triangular matrix transformation method for deriving the Wishart normalizing constant [94].

The first change of variables sets U = LTAL, where L is a lower triangular matrix

defined by the Cholesky decomposition LLT = V. Thus, tr(VA) = tr(LLTA) = tr(LTAL) =

tr(U). The transformation A→ U has Jacobian det(L)p+1 = det(V)−
p+1
2 .

∫
A>0

etr(−VA)dA =

∫
U>0

etr(−U) det(V)−
p+1
2 dU

= det(V)−
p+1
2

∫
U>0

etr(−U)dU

(8.31)

The second change of variables sets XXT = U by Cholesky decomposition. In general,

a matrix U = XXT is positive definite if and only if all diagonal elements xii > 0. Since X is

lower triangular, xij = 0 for all i < j, and the value of xij ranges from −∞ to ∞ for i > j.

160

www.manaraa.com

The transformation U→ X has Jacobian 2p
∏p

i=1 x
p−i+1
ii .

∫
U>0

etr(−U)dU = 2p
∫
xii>0

(
etr(−XXT)

p∏
i=1

xp−i+1
ii

)∏
i≥j

dxij

= 2p
∫
xii>0

(
e−

∑
i≥j x

2
ij

p∏
i=1

xp−i+1
ii

)∏
i≥j

dxij

=

[∏
i>j

∫ ∞
−∞

e−x
2
ijdxij

]
p∏
i=1

2

∫ ∞
0

e−x
2
iixp−i+1

ii dxii

=

[
Γ

(
1

2

)] p(p−1)
2

p∏
i=1

Γ

(
p+ 1

2
+

1− i
2

)
= Γp

(
p+ 1

2

)
(8.32)

where Γ(z) =
∫∞

0
tz−1e−tdt = 2

∫∞
0
x2z−1e−x

2
dx.

Combining Equations 8.30, 8.31, and 8.32 gives:

C(V, n) < 2nπ
pn
2 Γ
(p

2

)−n
Γp

(
p+ 1

2

)
det(V)−

p+1
2 . (8.33)

Therefore, C(V, n) is finite.

8.8 Appendix: Bingham Algorithms

We review known algorithms that are essential for working with the Bingham and Bingham-

Conjugate distributions. We include these algorithms to fix minor errors and to increase the

clarity and level of detail relative to their original presentations.

8.8.1 BinghamEigendecomposition Algorithm

The behavior of the Bingham distribution is determined by the eigenvalues of its parameter

matrix A, so it is standard to perform eigenvalue decomposition on −A. Furthermore, the

distribution is invariant to adding a constant to each eigenvalue, which only changes the

normalizing constant. It is common for the sake of convenience to assume without loss of

161

www.manaraa.com

generality that the eigenvalues are sorted from largest to smallest and normalized with the

smallest equal to zero. In practice it is only necessary to normalize the eigenvalues and swap

the smallest eigenvalue with the last eigenvalue.2

BinghamEigendecomposition takes a symmetric p× p parameter matrix A and

returns an array λ of normalized eigenvalues of −A, a corresponding orthogonal matrix Q of

eigenvectors, and the smallest eigenvalue λ? of −A.

1. Apply a standard eigendecomposition routine to the symmetric matrix −A to find λ̃

and Q̃ such that: −A = Q̃Λ̃Q̃−1. Let the array λ̃ be the diagonal of Λ̃.

2. Let i? = arg mini

(
λ̃i

)
and λ̃? = λ̃i? .

3. Define the length-p array λ by the elements: λp = 0, λi? = λ̃p−λ̃?, and for all i /∈ {p, i?}:

λi = λ̃i − λ̃?.

4. Define the p× p matrix Q by the columns: Qp = Q̃i? , Qi? = Q̃p, and for all i /∈ {p, i?}:

Qi = Q̃i.

5. Thus, λp = 0, λi ≥ 0, and the columns of Q are ordered to maintain the correspondence

between eigenvectors and eigenvalues.

6. Return the triple
(
λ,Q, λ̃?

)
.

8.8.2 BinghamSampler Algorithm

Sampling for the Bingham distribution uses the technique of Gibbs sampling with auxiliary

variables [92] as applied to the general Liouville family of distributions [83]. In light of

non-trivial omissions and an error, we describe the sampling algorithm in detail.

BinghamSampler [83] takes a symmetric p× p parameter matrix A and produces

a sequence of samples from the associated Bingham distribution with density f(x) ∝
2It is possible to avoid the swap and normalization step entirely by storing the index and value of the

smallest eigenvalue and adapting the formulas in the algorithms, but this would make the formulas harder to
follow.

162

www.manaraa.com

exp(−xTAx),x ∈ Sp−1. Because this is a Gibbs sampler, the samples are autocorrelated and

should be thinned, though this autocorrelation decays quickly in practice [83]. Note that this

algorithm refers to the BinghamEigendecomposition algorithm described in Section 8.8.

1. Let
(
λ,Q, λ̃?

)
= BinghamEigendecomposition(A).

2. Initialize the array s of length p− 1 such that si = 0.

3. Gibbs sampling loop:

(a) Sample v from the U
(
0, exp

(
−
∑p−1

i=1 λisi
))

uniform distribution.

(b) Sample w from U
(

0,
(
1−

∑p−1
i=1 si

)−1/2
)

.

(c) For i from 1 to p− 1:

i. Let t = 1−
∑

1≤j≤p−1, j 6=i sj.

ii. Let c = max (0, t− w−2).

iii. Let d = min
(
λ−1
i

(
− ln v −

∑
1≤j≤p−1, j 6=i λjsj

)
, t
)

.

iv. Sample u from U
(
c1/2, d1/2

)
.3

v. Set si = u2.

(d) Set sp = 1−
∑p−1

i=1 si.

(e) Set x = Qs1/2 (matrix product and element-wise exponentiation).

(f) Yield the sample x.

8.8.3 BinghamConstant Algorithm

BinghamConstant [86] takes a symmetric p×p parameter matrix A and returns an estimate

ĉ of the normalizing constant B(A) such that the Bingham density f(x) ≈ ĉ−1 exp(xTAx), x ∈

Sp−1.

3Note that the bounds were mistakenly reported as: (c1/α1 , d1/α1) [83]. The bounds from the change of
variables should have instead read: (cα1 , dα1).

163

www.manaraa.com

1. Let
(
λ,Q, λ̃?

)
= BinghamEigendecomposition(A).

2. Let K
(1)
θ (t) =

∑p
i=1

1
2(λi−t) ,

K
(2)
θ (t) =

∑p
i=1

1
2(λi−t)2 ,

K
(3)
θ (t) =

∑p
i=1

1
(λi−t)3 ,

and K
(4)
θ (t) =

∑p
i=1

3
(λi−t)4 .

3. Apply a standard root-finding routine (such as Newton’s method) to find the unique

root t̂ in the interval (−p/2,−1/2) of the function K
(1)
θ (t)− 1 with derivative K

(2)
θ (t)

and initial value t0 = −1/2.

4. Let K̂
(2)
θ = K

(2)
θ

(
t̂
)
, K̂

(3)
θ = K

(3)
θ

(
t̂
)
, and K̂

(4)
θ = K

(4)
θ

(
t̂
)
.

5. Let T =
K̂

(4)
θ

8
(
K̂

(2)
θ

)2 − 5
(
K̂

(3)
θ

)2
24
(
K̂

(2)
θ

)3 .

6. Return ĉ = (2πp−1)
1/2
(
K̂

(2)
θ

∏p
i=1

(
λi − t̂

))−1/2

eT−t̂−λ̂
?
.

Note that the Bingham distribution with p = 3 and λ1 = λ2 = λ3 = 0 is simply the

uniform distribution on the ordinary sphere. In this case, the true value of the normalizing

constant is 4π, and this algorithm estimates the constant as 3.997π.

164

www.manaraa.com

Conclusion

165

www.manaraa.com

Chapter 9

Conclusion

We set out to improve parallel optimization by beginning with a parallel perspective

and treating coordination and communication as primary concerns. In Section 9.1 we review

how each of the contributions of this work contribute to this goal. In Section 9.2 we look

forward to how future work can further develop parallel optimization algorithms based on

these contributions.

9.1 Contributions

This work is organized in three parts. The first part describes a platform for conveniently

developing parallel optimization algorithms with communication and centralized coordination

explicitly called out. The second part explores various ways to improve the performance

of Particle Swarm Optimization in a parallel computational environment by reducing com-

munication and unnecessary coordination. The third part reconsiders how the work of

optimization should be decomposed for parallel computation and develops a statistical model

for coordinating search directions for exploiting separability.

The first part describes a MapReduce framework and changes to the MapReduce

model that make it convenient to develop flexible parallel optimization algorithms. Chapter 2

decomposes the operations of the standard PSO algorithm, reformulates them as MapReduce

operations, and motivates the need for iterative MapReduce. Note that PSO in MapReduce

produces numerically identical results to a standard serial PSO implementation if given the

same random seed. Chapter 3 presents the Mrs MapReduce framework. In practice, the

166

www.manaraa.com

MapReduce-based optimization algorithms have proven easy to develop, adapt, and use. The

programming model’s explicitness in handling the state of data and communication, along

with the framework’s random number facilities, make it easy to ensure that numerically

identical computation is performed in both standard serial PSO and in various equivalent

parallel formulations. For example, the complex interactions in Speculative Evaluation

PSO (in Chapter 5) require careful debugging that probably may have proved incurably

difficult in a typical low-level implementation. Chapter 4 describes an improved iterative

MapReduce programming model with associated performance improvements for programs such

as optimization algorithms. For example, the asynchronous model allows a MapReduce-based

optimization algorithm to support asynchronous iteration with much improved performance,

while requiring little or no change to the map and reduce functions. The first part of the

work sets a computational framework in which to explore parallel optimization.

The second part uses the framework to explore a variety of changes to improve

the parallel performance of Particle Swarm Optimization by reducing communication and

unnecessary coordination. Chapter 5 introduces Speculative Evaluation PSO, which performs

iterations twice as quickly as standard parallel PSO, at the cost of additional processors. It

produces numerically identical results as standard PSO and gives insight into the behavior of

iteration in PSO. Chapter 6 describes the Apiary topology for using subswarms in parallel

PSO without requiring centralized coordination. As it achieves this through the topology

mechanism of PSO, it is compatible with asynchronous PSO. Chapter 7 reviews all of these,

and many other, approaches to parallel PSO, describing their demands on communication and

interaction between tasks and clarifying the types of objective functions and computational

environments in which each approach is well suited. The second part of the work sheds light

on the fundamental concerns of parallel optimization.

The third part develops a mathematical model for performing inference on search

directions for exploiting loose separability of an objective function, without requiring central-

ized coordination or receiving all sampled points from other processors. Chapter 8 introduces

167

www.manaraa.com

the BinghamConjugate distribution with a proof that its constant of integration is finite

and an efficient sampling algorithm. Furthermore, it explores how this distribution can be

practically applied and incorporated into a mathematical model that can detect promising

directions in non-overlapping portions of the hypersphere. The third part of the work lays a

foundation for exploiting separability which can be further developed into a wide variety of

parallel optimization algorithms founded on sound mathematical principles.

9.2 Future Work

This work makes it possible to develop a variety of algorithms that perform decentralized

coordination while exploiting loose separability. This opens up many areas for additional

research, including:

• developing line search algorithm to use on each processor;

• pruning past observed directions to save space and accommodate changes in the state

of other processors;

• developing tests for detecting separability;

• determining which evaluated points to share with other processors;

• using additional processors beyond the number of dimensions; and

• enriching the statistical model (note that the normalizing constant algorithm [86]

discussed in Appendix 8.8 may make certain types of mixture models practical).

Each of these issues, and many others not listed here, are fascinating starting points for

further work.

We also note that the area of function optimization needs new theoretical tools for

describing and classifying objective functions. Functions are described in terms of whether they

are convex or non-convex, unimodal or multimodal, continuous or discontinuous, and separable

168

www.manaraa.com

or non-separable. Although functions can be described separable or non-separable, there

may be many different types of local or weak separability. While the existing classifications

are useful, a more complete set of useful classifications would encourage the development of

algorithms designed for specific classes of functions.

169

www.manaraa.com

References

[1] A. Cauchy. Méthode générale pour la résolution des systemes déquations simultanées.

Comp. Rend. Sci. Paris, 25(1847):536, 1847.

[2] M. Powell. An Efficient Method for Finding the Minimum of a Function of Several

Variables Without Calculating Derivatives. The computer journal, 7(2), 1964.

[3] J. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer

Journal, 7(4), 1965.

[4] J. Matyas. Random Optimization. Automation and Remote Control, 26(2), 1965.

[5] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. Optimization by Simulated Annealing.

Science, 220(4598), 1983.

[6] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of

State Calculations by Fast Computing Machines. Journal of Chemical Physics, 21, 1953.

[7] I. Rechenberg. Evolutionsstrategie—Optimierung technisher Systeme nach Prinzipien

der biologischen Evolution. Frommann-Holzboog, 1973.

[8] T. Bäck, F. Hoffmeister, and H.-P. Schwefel. A Survey of Evolution Strategies. In Proc.

International Conference on Genetic Algorithms. 1991.

[9] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,

1975.

[10] K. De Jong. Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D.

thesis, University of Michigan, 1975.

[11] N. Hansen and A. Ostermeier. Adapting Arbitrary Normal Mutation Distributions in

Evolution Strategies: The Covariance Matrix Adaptation. In Proc. IEEE International

Conference on Evolutionary Computation. 1996.

170

www.manaraa.com

[12] R. Storn and K. Price. Differential Evolution—a Simple and Efficient Heuristic for

Global Optimization Over Continuous Spaces. Journal of global optimization, 11(4):341,

1997.

[13] P. Bosman and D. Thierens. Expanding from Discrete to Continuous Estimation of

Distribution Algorithms: the IDEA. In Proc. Parallel Problem Solving from Nature.

2000.

[14] P. Larrañaga, R. Etxeberria, J. Lozano, and J. Peña. Optimization in Continuous

Domains by Learning and Simulation of Gaussian Networks. In Proc. Optimization

by Building and Using Probabilistic Models Workshop at the Genetic and Evolutionary

Computation Conference. 2000.

[15] J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. In Proc. International

Conference on Neural Networks IV. 1995.

[16] W. Zhao, H. Ma, and Q. He. Parallel k-means Clustering Based on MapReduce. Cloud

Computing, 2009.

[17] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-Reduce for

Machine Learning on Multicore. In Proc. Advances in Neural Information Processing

Systems. 2007.

[18] C. Jin, C. Vecchiola, and R. Buyya. MRPGA: an Extension of MapReduce for Paral-

lelizing Genetic Algorithms. In IEEE International Conference on eScience. 2008.

[19] J. Liang and P. Suganthan. Dynamic Multi-Swarm Particle Swarm Optimizer. In Proc.

IEEE Swarm Intelligence Symposium. 2005.

[20] J. Romero and C. Cotta. Optimization by Island-Structured Decentralized Particle

Swarms. In Proc. Fuzzy Days: Computational Intelligence, Theory and Applications.

2005.

[21] D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Optimization. IEEE

Transactions on Evolutionary Computation, 1(1), 1997.

[22] A. McNabb, C. Monson, and K. Seppi. Parallel PSO using MapReduce. In Proc. IEEE

Congress on Evolutionary Computation. 2007.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

In Proc. Operating System Design and Implementation. 2004.

171

www.manaraa.com

[24] M. Clerc and J. Kennedy. The Particle Swarm—Explosion, Stability, and Convergence in

a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation,

6(1), 2002.

[25] J. Schutte, J. Reinbolt, B. Fregly, R. Haftka, and A. George. Parallel Global Optimization

with the Particle Swarm Algorithm. International Journal for Numerical Methods in

Engineering, 61(13), 2004.

[26] B.-I. Koh, A. George, R. Haftka, and B. Fregly. Parallel Asynchronous Particle Swarm

Optimization. International Journal of Numerical Methods in Engineering, 67, 2006.

[27] G. Venter and J. Sobieszczanski-Sobieski. A Parallel Particle Swarm Optimization

Algorithm Accelerated by Asynchronous Evaluations. In Proc. World Congress on

Structural and Multidisciplinary Optimization. 2005.

[28] M. Belal and T. El-Ghazawi. Parallel Models for Particle Swarm Optimizers. International

Journal of Intelligent Computing and Information Sciences, 4(1), 2004.

[29] S. Mostaghim, J. Branke, and H. Schmeck. Multi-Objective Particle Swarm Optimization

on Computer Grids. Technical Report 502, AIFB Institute, Karlsruhe, Germany, 2006.

[30] N. Jin and Y. Rahmat-Samii. Parallel Particle Swarm Optimization and Finite-Difference

Time-Domain (PSO/FDTD) Algorithm for Multiband and Wide-Band Patch Antenna

Designs. IEEE Transactions on Antennas and Propogation, 53(11), 2005.

[31] K. E. Parsopoulos, D. K. Tasoulis, and M. N. Vrahatis. Multiobjective Optimization

Using Parallel Vector Evaluated Particle Swarm Optimization. In Proc. IASTED

International Conference on Artificial Intelligence and Applications. IASTED/ACTA

Press, Calgary, AB, Canada, 2004.

[32] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing.

Addison-Wesley, Harlow, England, second edition, 2003.

[33] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[34] J. Kennedy. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on

Particle Swarm Performance. In Proc. IEEE Congress on Evolutionary Computation,

volume 3. 1999.

[35] A. McNabb, J. Lund, and K. Seppi. Mrs: MapReduce for Scientific Computing in

Python. In Proc. Python for High Performance and Scientific Computing. 2012.

172

www.manaraa.com

[36] A. McNabb, C. Monson, and K. Seppi. MRPSO: MapReduce Particle Swarm Optimiza-

tion. In Proc. Conference on Genetic and Evolutionary Computation. 2007.

[37] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. HaLoop: Efficient Iterative Data

Processing on Large Clusters. Proc. VLDB Endowment, 3(1-2), 2010.

[38] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and G. Fox. Twister: a

Runtime for Iterative MapReduce. In Proc: High Performance Distributed Computing.

2010.

[39] D. Bratton and J. Kennedy. Defining a Standard for Particle Swarm Optimization. In

Proc. IEEE Swarm Intelligence Symposium. 2007.

[40] A. McNabb and K. Seppi. The Apiary Topology: Emergent Behavior in Communities of

Particle Swarms. In Proc. Parallel Problem Solving from Nature. 2012.

[41] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

Computing with Working Sets. In Proc. USENIX Conference on Hot Topics in Cloud

Computing. 2010.

[42] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-Parallel

Programs from Sequential Building Blocks. ACM SIGOPS Operating Systems Review,

41(3), 2007.

[43] D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand.

Ciel: a Universal Execution Engine for Distributed Data-Flow Computing. In Proc.

Network Systems Design and Implementation. 2011.

[44] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Bradshaw, and N. Weizen-

baum. FlumeJava: Easy, Efficient Data-Parallel Pipelines. In ACM Sigplan Notices.

2010.

[45] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. ACM SIGOPS

Operating Systems Review, 37(5), 2003.

[46] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System.

In Proc. IEEE Symposium on Mass Storage Systems and Technologies. 2010.

[47] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.

Delay Scheduling: a Simple Technique for Achieving Locality and Fairness in Cluster

Scheduling. In Proc. European Conference on Computer Systems. 2010.

173

www.manaraa.com

[48] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop: Asynchronous Iterations for

MapReduce. In Proc. IEEE Cloud Computing Technology and Science. 2011.

[49] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: a Distributed Computing

Framework for Iterative Computation. In IEEE International Parallel and Distributed

Processing Symposium Workshops. 2011.

[50] E. Morenoff and J. McLean. Application of level changing to a multilevel storage

organization. Communications of the ACM, 10(3):149, 1967.

[51] I. Scriven, D. Ireland, A. Lewis, S. Mostaghim, and J. Branke. Asynchronous Multiple

Objective Particle Swarm Optimisation in Unreliable Distributed Environments. In Proc.

IEEE Congress on Evolutionary Computation. 2008.

[52] K. Tang, X. Li, P. Suganthan, Z. Yang, and T. Weise. Benchmark Functions for

the CEC’2010 Special Session and Competition on Large Scale Global Optimization.

Technical report, IEEE Congress on Evolutionary Computation, November, 2009.

[53] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1977.

[54] D. Walker and E. Ringger. Model-based document clustering with a collapsed gibbs

sampler. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 2008.

[55] M. Meila and D. Heckerman. An Experimental Comparison of Model-Based Clustering

Methods. Machine Learning, 2001.

[56] N. Kumar, S. Satoor, and I. Buck. Fast Parallel Expectation Maximization for Gaussian

Mixture Models on GPUs Using CUDA. In Proc. High Performance Computing and

Communications. 2009.

[57] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient Large-Scale

Distributed Training of Conditional Maximum Entropy Models. Advances in Neural

Information Processing Systems, 2009.

[58] K. Lang. Newsweeder: Learning to filter netnews. In Proc. International Conference on

Machine Learning. 1995.

[59] K. Ganchev and M. Dredze. Small statistical models by random feature mixing. In Proc.

Workshop on Mobile NLP at ACL. 1998.

174

www.manaraa.com

[60] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing

for large scale multitask learning. In Proc. International Conference on Machine Learning.

2009.

[61] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning

Research, 3, 2003.

[62] M. Gardner, A. McNabb, and K. Seppi. Speculative Evaluation in Particle Swarm

Optimization. In Proc. Parallel Problem Solving from Nature. 2010.

[63] A. McNabb, M. Gardner, and K. Seppi. An Exploration of Topologies and Communication

in Large Particle Swarms. In Proc. IEEE Congress on Evolutionary Computation, pp.

712–719. 2009.

[64] R. Mendes. Population Topologies and Their Influence in Particle Swarm Performance.

Ph.D. thesis, Universidade do Minho, Guimaraes, Portugal, 2004.

[65] D. Sammataro and A. Avitabile. Beekeeper’s Handbook, 3rd edition. Cornell University

Press, 1998.

[66] I. Sample. Bees Translate Dances of Foreign Species. The Guardian, 2008.

[67] S.-C. Chu and J.-S. Pan. Intelligent Parallel Particle Swarm Optimization Algorithms.

Parallel Evolutionary Computations, 2006.

[68] Y. Lorion, T. Bogon, I. Timm, and O. Drobnik. An Agent Based Parallel Particle Swarm

Optimization—APPSO. In Swarm Intelligence Symposium. 2009.

[69] H. Wang and F. Qian. An Improved Particle Swarm Optimizer with Shuffled Sub-

Swarms and its Application in Soft-Sensor of Gasoline Endpoint. In Proc. International

Conference on Intelligent Systems and Knowledge Engineering. 2007.

[70] M. Dwass. Modified Randomization Tests for Nonparametric Hypotheses. The Annals

of Mathematical Statistics, 28(1):181, 1957.

[71] A. McNabb and K. Seppi. Serial PSO results are irrelevant in a multi-core parallel world.

In Proc. IEEE Congress on Evolutionary Computation. 2014.

[72] D. Gies and Y. Rahmat-Samii. Particle Swarm Optimization for Reconfigurable Phase-

Differentiated Array Design. Microwave and Optical Technology Letters, 38(3), 2003.

[73] Y. Zhou and Y. Tan. GPU-based parallel particle swarm optimization. In Evolutionary

Computation, 2009. CEC’09. IEEE Congress on. 2009.

175

www.manaraa.com

[74] J. Li, X. Wang, R. He, and Z. Chi. An Efficient Fine-Grained Parallel Genetic Algorithm

Based on GPU-Accelerated. In Network and Parallel Computing Workshops, 2007. NPC

Workshops. IFIP International Conference on. 2007.

[75] I. Scriven, A. Lewis, D. Ireland, and J. Lu. Decentralised Distributed Multiple Objective

Particle Swarm Optimisation Using Peer to Peer Networks. In Proc. IEEE Congress on

Evolutionary Computation. 2008.

[76] J. Jordan, S. Helwig, and R. Wanka. Social Interaction in Particle Swarm Optimization,

the Ranked FIPS, and Adaptive Multi-Swarms. In Proc. Conference on Genetic and

Evolutionary Computation. ACM, 2008.

[77] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An Asynchronous Parallel

Stochastic Coordinate Descent Algorithm. In Proc. International Conference on Machine

Learning. 2014.

[78] I. Loshchilov, M. Schoenauer, and M. Sebag. Adaptive Coordinate Descent. In Proc.

Genetic and Evolutionary Computation Conference. 2011.

[79] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a

function. The Computer Journal, 3(3), 1960.

[80] P. Jupp and K. Mardia. A Unified View of the Theory of Directional Statistics, 1975–1988.

International Statistical Review, 57(3), 1989.

[81] C. Bingham. An Antipodally Symmetric Distribution on the Sphere. The Annals of

Statistics, 2(6), 1974.

[82] J. T. Kent. The Complex Bingham Distribution and Shape Analysis. Journal of the

Royal Statistical Society, Series B, 1994.

[83] A. Kume and S. G. Walker. Sampling from compositional and directional distributions.

Statistics and Computing, 16(3), 2006.

[84] J. T. Kent, A. M. Ganeiber, and K. V. Mardia. A New Method to Simulate the Bingham

and Related Distributions in Directional Data Analysis with Applications. Technical

report, University of Leeds, 2013.

[85] S. G. Walker. Bayesian Estimation of the Bingham Distribution. Brazilian Journal of

Probability and Statistics, 2013.

176

www.manaraa.com

[86] A. Kume and A. T. A. Wood. Saddlepoint Approximations for the Bingham and

Fisher–Bingham Normalising Constants. Biometrika, 92(2), 2005.

[87] G. Nuñez-Antonio and E. Gutiérrez-Peña. A Bayesian Analysis of Directional Data

Using the Projected Normal Distribution. Journal of Applied Statistics, 32(10), 2005.

[88] J. T. Kent, P. D. Constable, and F. Er. Simulation for the Complex Bingham Distribution.

Statistics and Computing, 14(1), 2004.

[89] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, second edition,

2004.

[90] W. Smith and R. Hocking. Algorithm AS 53: Wishart Variate Generator. Journal of

the Royal Statistical Society, Series C, 21(3), 1972.

[91] R. J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley, 1982.

[92] P. Damien, J. Wakefield, and S. Walker. Gibbs Sampling for Bayesian Non-Conjugate

and Hierarchical Models by Using Auxiliary Variables. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 61(2), 1999.

[93] L. G̊arding. The Solution of Cauchy’s Problem for Two Totally Hyperbolic Linear

Differential Equations by Means of Riesz Integrals. The Annals of Mathematics, 48(4),

1947.

[94] A. C. Aitken. On the Wishart Distribution in Statistics. Biometrika, 36(1–2), 1949.

177

	Brigham Young University
	BYU ScholarsArchive
	2015-03-01

	Judicious Use of Communication for Inherently Parallel Optimization
	Andrew W. McNabb
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	Introduction
	1 Introduction
	1.1 Optimization
	1.2 Research Area Overview
	1.3 Thesis Statement
	1.4 Overview
	1.4.1 Programming Framework for Parallel Optimization (Part I)
	1.4.2 Reconsidering Particle Swarm Optimization in a Parallel Context (Part II)
	1.4.3 Inference of Search Directions (Part III)

	1.5 Publications

	I Programming Framework for Parallel Optimization
	2 Parallel PSO Using MapReduce
	2.1 Introduction
	2.2 Particle Swarm Optimization
	2.3 MapReduce
	2.3.1 Map Function
	2.3.2 Reduce Function
	2.3.3 Example: WordCount
	2.3.4 Benefits of MapReduce
	2.3.5 MapReduce Implementations

	2.4 MapReduce PSO (MRPSO)
	2.4.1 Particle Representation and Messages
	2.4.2 MRPSO Map Function
	2.4.3 MRPSO Reduce Function
	2.4.4 Map and Reduce in Context

	2.5 Results and Remarks
	2.5.1 Implementation
	2.5.2 Environment
	2.5.3 Methodology
	2.5.4 RBF Network Training
	2.5.5 RBF Results
	2.5.6 Sphere
	2.5.7 RBF With 1,000,000 Points
	2.5.8 Load Balancing

	2.6 Future Work and Conclusions

	3 Mrs: MapReduce for Scientific Computing in Python
	3.1 Introduction
	3.2 Background and Related Work
	3.3 MapReduce in Scientific Computing
	3.4 The Design and Architecture of Mrs
	3.4.1 Programming Model
	3.4.2 Architecture

	3.5 Evaluation
	3.5.1 Subjective Assessment
	3.5.2 Performance

	3.6 Conclusion

	4 High Performance MapReduce for Iterative and Asynchronous Algorithms
	4.1 Introduction
	4.2 Related Work
	4.3 Synchronous MapReduce
	4.3.1 Infrequent Checkpointing to Distributed Filesystems
	4.3.2 Reduce-map Operation
	4.3.3 Iterative Programming Model

	4.4 Asynchronous MapReduce Programming Model
	4.5 Experimental Results
	4.5.1 Synchronous MapReduce
	4.5.2 Asynchronous MapReduce

	4.6 Conclusion

	II Reconsidering Particle Swarm Optimization in a Parallel Context
	5 Speculative Evaluation in Particle Swarm Optimization
	5.1 Introduction
	5.2 Particle Swarm Optimization
	5.3 Speculative Evaluation in PSO
	5.3.1 Implementation
	5.3.2 Using All Speculative Evaluations

	5.4 Results
	5.5 Conclusions

	6 The Apiary Topology: Emergent Behavior in Communities of Particle Swarms
	6.1 Introduction
	6.2 Background Material: Particle Swarm Optimization
	6.3 The Apiary Topology
	6.4 Experimental Results
	6.4.1 Apiaries in Serial PSO
	6.4.2 Apiary Parameters
	6.4.3 Parallel Performance of Apiaries

	6.5 Conclusions and Future Work

	7 Serial PSO Results Are Irrelevant in a Multi-core Parallel World
	7.1 Introduction
	7.2 Parallel PSO
	7.2.1 Particle Swarm Optimization
	7.2.2 Objective Functions
	7.2.3 Parallelization of PSO

	7.3 Processor Scaling Independent of Communication
	7.3.1 Independent Runs
	7.3.2 Swarm Size
	7.3.3 Speculative Evaluation

	7.4 Task Interaction and Communication
	7.4.1 Sparse Topologies
	7.4.2 Subswarms
	7.4.3 Synchronous and Asynchronous Parallel PSO

	7.5 Conclusion

	III Inference of Search Directions
	8 Inference of Search Directions for Exploiting Separability in Parallel Optimization
	8.1 Introduction
	8.2 Bingham and BinghamConjugate Distributions
	8.2.1 Bingham Conjugate Distribution
	8.2.2 Sampling Algorithm

	8.3 Model
	8.4 Results
	8.5 Conclusion
	8.6 Appendix: Properties of the Bingham Distribution
	8.7 Appendix: Proofs
	8.8 Appendix: Bingham Algorithms
	8.8.1 BinghamEigendecomposition Algorithm
	8.8.2 BinghamSampler Algorithm
	8.8.3 BinghamConstant Algorithm

	Conclusion
	9 Conclusion
	9.1 Contributions
	9.2 Future Work

	References

